Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

We are given that

(dy)/(dx)=sqrt(1-y^(2))". "
Find an expression for 
(d^(2)y)/(dx^(2)) in terms of 
x and 
y.

(d^(2)y)/(dx^(2))=

We are given that\newlinedydx=1y2 \frac{d y}{d x}=\sqrt{1-y^{2}} \text {. } \newlineFind an expression for d2ydx2 \frac{d^{2} y}{d x^{2}} in terms of x x and y y .\newlined2ydx2= \frac{d^{2} y}{d x^{2}}=

Full solution

Q. We are given that\newlinedydx=1y2 \frac{d y}{d x}=\sqrt{1-y^{2}} \text {. } \newlineFind an expression for d2ydx2 \frac{d^{2} y}{d x^{2}} in terms of x x and y y .\newlined2ydx2= \frac{d^{2} y}{d x^{2}}=
  1. Given Derivative: We are given the first derivative of yy with respect to xx as dydx=1y2\frac{dy}{dx} = \sqrt{1 - y^2}. To find the second derivative, we need to differentiate dydx\frac{dy}{dx} with respect to xx.
  2. Apply Chain Rule: Using the chain rule, we differentiate dydx\frac{dy}{dx} with respect to xx. Since yy is a function of xx, we treat yy as a function y(x)y(x) and apply the chain rule accordingly.\frac{d^{\(2\)}y}{dx^{\(2\)}} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(\sqrt{\(1\) - y^{\(2\)}}\right)
  3. Differentiate \(\sqrt{1 - y^2}: To differentiate 1y2\sqrt{1 - y^2}, we use the chain rule again. Let u=1y2u = 1 - y^2, then the derivative of u\sqrt{u} with respect to uu is (12)u12(\frac{1}{2})u^{-\frac{1}{2}}.\newlineddx(1y2)=ddx(u)dudydydx\frac{d}{dx} (\sqrt{1 - y^2}) = \frac{d}{dx} (\sqrt{u}) \cdot \frac{du}{dy} \cdot \frac{dy}{dx}
  4. Find dudy\frac{du}{dy}: Now we find dudy\frac{du}{dy}, which is the derivative of u=1y2u = 1 - y^2 with respect to yy.\newlinedudy=ddy(1y2)=2y\frac{du}{dy} = \frac{d}{dy} (1 - y^2) = -2y
  5. Substitute and Simplify: Substitute dudy\frac{du}{dy} into the previous expression and simplify.ddx(1y2)=(12)(1y2)12(2y)(dydx)\frac{d}{dx} (\sqrt{1 - y^2}) = \left(\frac{1}{2}\right)(1 - y^2)^{-\frac{1}{2}} \cdot (-2y) \cdot \left(\frac{dy}{dx}\right)
  6. Substitute dydx\frac{dy}{dx}: We already know that dydx=1y2\frac{dy}{dx} = \sqrt{1 - y^2}, so we substitute this into the expression.d2ydx2=12(1y2)12(2y)1y2\frac{d^2y}{dx^2} = \frac{1}{2}(1 - y^2)^{-\frac{1}{2}} \cdot (-2y) \cdot \sqrt{1 - y^2}
  7. Simplify Expression: Simplify the expression by multiplying the terms together.\newlined2ydx2=y(1y2)12×(1y2)12\frac{d^{2}y}{dx^{2}} = -y(1 - y^{2})^{-\frac{1}{2}} \times (1 - y^{2})^{\frac{1}{2}}
  8. Final Result: Since (1y2)12(1y2)12(1 - y^2)^{-\frac{1}{2}} \cdot (1 - y^2)^{\frac{1}{2}} equals 11, the expression simplifies to: d2ydx2=y\frac{d^{2}y}{dx^{2}} = -y

More problems from Transformations of quadratic functions