Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the following set of data, find the population standard deviation, to the nearest hundredth.
139,126,51,61,77,109,112

For the following set of data, find the population standard deviation, to the nearest hundredth.\newline139,126,51,61,77,109,112139,126,51,61,77,109,112

Full solution

Q. For the following set of data, find the population standard deviation, to the nearest hundredth.\newline139,126,51,61,77,109,112139,126,51,61,77,109,112
  1. List data set & mean: List the data set and find the mean (average) of the data.\newlineThe data set is: 139,126,51,61,77,109,112139, 126, 51, 61, 77, 109, 112.\newlineTo find the mean, add all the numbers together and divide by the number of data points.\newlineMean = (139+126+51+61+77+109+112)/7(139 + 126 + 51 + 61 + 77 + 109 + 112) / 7\newlineMean = 675/7675 / 7\newlineMean 96.43\approx 96.43
  2. Subtract & square differences: Subtract the mean from each data point and square the result to find the squared differences.\newlineSquared differences:\newline(13996.43)2=42.5721812.20(139 - 96.43)^2 = 42.57^2 \approx 1812.20\newline(12696.43)2=29.572874.48(126 - 96.43)^2 = 29.57^2 \approx 874.48\newline(5196.43)2=45.4322063.88(51 - 96.43)^2 = -45.43^2 \approx 2063.88\newline(6196.43)2=35.4321255.28(61 - 96.43)^2 = -35.43^2 \approx 1255.28\newline(7796.43)2=19.432377.50(77 - 96.43)^2 = -19.43^2 \approx 377.50\newline(10996.43)2=12.572158.04(109 - 96.43)^2 = 12.57^2 \approx 158.04\newline(11296.43)2=15.572242.52(112 - 96.43)^2 = 15.57^2 \approx 242.52
  3. Add squared differences: Add all the squared differences together to find the sum of the squared differences.\newlineSum of squared differences = 1812.20+874.48+2063.88+1255.28+377.50+158.04+242.521812.20 + 874.48 + 2063.88 + 1255.28 + 377.50 + 158.04 + 242.52\newlineSum of squared differences 6783.90\approx 6783.90
  4. Find variance: Divide the sum of the squared differences by the number of data points to find the variance.\newlineSince this is a population standard deviation, we divide by the number of data points N=7N = 7.\newlineVariance =6783.907= \frac{6783.90}{7}\newlineVariance 968.41\approx 968.41
  5. Calculate standard deviation: Take the square root of the variance to find the population standard deviation.\newlinePopulation standard deviation = 968.41\sqrt{968.41}\newlinePopulation standard deviation 31.11\approx 31.11

More problems from Percent error: word problems