Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Using implicit differentiation, find 
(dy)/(dx).

(3x^(3)-3y^(2))^(2)=5xy

Using implicit differentiation, find dydx \frac{d y}{d x} .\newline(3x33y2)2=5xy \left(3 x^{3}-3 y^{2}\right)^{2}=5 x y

Full solution

Q. Using implicit differentiation, find dydx \frac{d y}{d x} .\newline(3x33y2)2=5xy \left(3 x^{3}-3 y^{2}\right)^{2}=5 x y
  1. Apply Chain Rule: First, we need to apply the chain rule to differentiate both sides of the equation with respect to xx. The left side of the equation is a function raised to the second power, so we'll use the chain rule to differentiate it. The right side is a product of xx and yy, so we'll use the product rule to differentiate it.
  2. Differentiate Left Side: Differentiate the left side of the equation (3x33y2)2(3x^3 - 3y^2)^2 with respect to xx. Using the chain rule, we get 2(3x33y2)ddx(3x33y2)2(3x^3 - 3y^2) * \frac{d}{dx}(3x^3 - 3y^2). Now we need to differentiate the inside function 3x33y23x^3 - 3y^2 with respect to xx.
  3. Substitute Inside Function: Differentiate 3x33x^3 with respect to xx to get 9x29x^2. Since yy is a function of xx, we need to use the chain rule to differentiate 3y2-3y^2 with respect to xx, which gives us 6ydydx-6y \cdot \frac{dy}{dx}. So the derivative of the inside function is 9x26ydydx9x^2 - 6y \cdot \frac{dy}{dx}.
  4. Differentiate Right Side: Now we substitute the derivative of the inside function back into the chain rule expression. We get 2(3x33y2)×(9x26y×dydx)2(3x^3 - 3y^2) \times (9x^2 - 6y \times \frac{dy}{dx}).
  5. Set Equations Equal: Next, differentiate the right side of the equation 5xy5xy with respect to xx using the product rule. The derivative of 5xy5xy with respect to xx is 5y+5xdydx.5y + 5x \frac{dy}{dx}.
  6. Expand Left Side: Now we have the derivatives of both sides of the equation. Set them equal to each other to get 2(3x33y2)(9x26ydydx)=5y+5xdydx2(3x^3 - 3y^2) \cdot (9x^2 - 6y \cdot \frac{dy}{dx}) = 5y + 5x \cdot \frac{dy}{dx}.
  7. Collect Terms: Expand the left side of the equation to simplify it. We get 2×(27x518x2y×dydx27x3y2+18y3×dydx)2 \times (27x^5 - 18x^2y \times \frac{dy}{dx} - 27x^3y^2 + 18y^3 \times \frac{dy}{dx}).
  8. Factor Out dy/dx: Distribute the 22 on the left side to get 54x536x2ydydx54x3y2+36y3dydx54x^5 - 36x^2y \cdot \frac{dy}{dx} - 54x^3y^2 + 36y^3 \cdot \frac{dy}{dx}.
  9. Move Term: Now we need to collect all the terms with dy/dxdy/dx on one side of the equation and the rest on the other side. We get 36x2ydy/dx+36y3dy/dx=5y54x5+54x3y25xdy/dx-36x^2y \cdot dy/dx + 36y^3 \cdot dy/dx = 5y - 54x^5 + 54x^3y^2 - 5x \cdot dy/dx.
  10. Solve for dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} on the left side of the equation to get dydx×(36x2y+36y3)=5y54x5+54x3y25x×dydx\frac{dy}{dx} \times (-36x^2y + 36y^3) = 5y - 54x^5 + 54x^3y^2 - 5x \times \frac{dy}{dx}.
  11. Solve for dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} on the left side of the equation to get dydx×(36x2y+36y3)=5y54x5+54x3y25x×dydx\frac{dy}{dx} \times (-36x^2y + 36y^3) = 5y - 54x^5 + 54x^3y^2 - 5x \times \frac{dy}{dx}.Move the term 5x×dydx-5x \times \frac{dy}{dx} from the right side to the left side to get dydx×(36x2y+36y3+5x)=5y54x5+54x3y2\frac{dy}{dx} \times (-36x^2y + 36y^3 + 5x) = 5y - 54x^5 + 54x^3y^2.
  12. Solve for dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} on the left side of the equation to get dydx×(36x2y+36y3)=5y54x5+54x3y25x×dydx\frac{dy}{dx} \times (-36x^2y + 36y^3) = 5y - 54x^5 + 54x^3y^2 - 5x \times \frac{dy}{dx}.Move the term 5x×dydx-5x \times \frac{dy}{dx} from the right side to the left side to get dydx×(36x2y+36y3+5x)=5y54x5+54x3y2\frac{dy}{dx} \times (-36x^2y + 36y^3 + 5x) = 5y - 54x^5 + 54x^3y^2.Now we can solve for dydx\frac{dy}{dx} by dividing both sides of the equation by (36x2y+36y3+5x)(-36x^2y + 36y^3 + 5x). We get dydx=5y54x5+54x3y236x2y+36y3+5x\frac{dy}{dx} = \frac{5y - 54x^5 + 54x^3y^2}{-36x^2y + 36y^3 + 5x}.

More problems from Simplify expressions using trigonometric identities