Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use the following function rule to find f(37)f(37).\newlinef(x)=12x+12f(x) = 12\sqrt{x + 12}\newlinef(37)=f(37) = _____

Full solution

Q. Use the following function rule to find f(37)f(37).\newlinef(x)=12x+12f(x) = 12\sqrt{x + 12}\newlinef(37)=f(37) = _____
  1. Identify Function Rule: Identify the function rule and the input value.\newlineWe are given the function rule f(x)=12x+12f(x) = 12\sqrt{x + 12} and we need to find the value of f(37)f(37).
  2. Substitute Input Value: Substitute the input value into the function rule.\newlineTo find f(37)f(37), we substitute 3737 for xx in the function rule.\newlinef(37)=1237+12f(37) = 12\sqrt{37 + 12}
  3. Simplify Expression: Simplify the expression inside the square root. Calculate the value inside the square root before taking the square root. 37+12=4937 + 12 = 49
  4. Take Square Root: Take the square root of the simplified expression.\newlineSince 4949 is a perfect square, the square root of 4949 is 77.\newline49=7\sqrt{49} = 7
  5. Multiply by Coefficient: Multiply the square root by the coefficient.\newlineNow, multiply the square root by the coefficient 1212 to find f(37)f(37).\newlinef(37)=12×7f(37) = 12 \times 7
  6. Calculate Final Result: Calculate the final result.\newlineMultiply 1212 by 77 to get the final answer.\newlinef(37)=12×7=84f(37) = 12 \times 7 = 84

More problems from Evaluate functions