Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use the following function rule to find f(121)f(121).\newlinef(x)=11+6xf(x) = 11 + 6\sqrt{x}\newlinef(121)=f(121) = _____

Full solution

Q. Use the following function rule to find f(121)f(121).\newlinef(x)=11+6xf(x) = 11 + 6\sqrt{x}\newlinef(121)=f(121) = _____
  1. Identify Function and Input: Identify the function and the input value.\newlineWe are given the function f(x)=11+6xf(x) = 11 + 6\sqrt{x} and we need to find the value of f(121)f(121).
  2. Substitute Input into Function: Substitute the input value into the function.\newlineTo find f(121)f(121), we substitute xx with 121121 in the function f(x)f(x).\newlinef(121)=11+6121f(121) = 11 + 6\sqrt{121}
  3. Calculate Square Root: Calculate the square root of the input value.\newlineThe square root of 121121 is 1111, since 11×11=12111 \times 11 = 121.\newlinef(121)=11+6×11f(121) = 11 + 6 \times 11
  4. Multiply by Coefficient: Multiply the square root by the coefficient.\newlineMultiply 66 by 1111 to get the second term of the function.\newlinef(121)=11+6×11f(121) = 11 + 6 \times 11\newlinef(121)=11+66f(121) = 11 + 66
  5. Add Constant Term: Add the constant term to the product.\newlineAdd 1111 to 6666 to get the final value of f(121)f(121).\newlinef(121)=11+66f(121) = 11 + 66\newlinef(121)=77f(121) = 77

More problems from Evaluate functions