Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use partial fractions to find the power series of the function: 
(9x^(2)+184)/((x^(2)+16)(x^(2)+36)

sum_(n=0)^(oo)

Use partial fractions to find the power series of the function: 9x2+184(x2+16)(x2+36) \frac{9 x^{2}+184}{\left(x^{2}+16\right)\left(x^{2}+36)\right.} \newlinen=0 \sum_{n=0}^{\infty} ____________

Full solution

Q. Use partial fractions to find the power series of the function: 9x2+184(x2+16)(x2+36) \frac{9 x^{2}+184}{\left(x^{2}+16\right)\left(x^{2}+36)\right.} \newlinen=0 \sum_{n=0}^{\infty} ____________
  1. Express Function: Step 11: Express the function using partial fractions.\newlineWe need to decompose the function (9x2+184)/((x2+16)(x2+36))(9x^2 + 184)/((x^2 + 16)(x^2 + 36)) into simpler fractions.\newlineAssume (9x2+184)/((x2+16)(x2+36))=A/(x2+16)+B/(x2+36)(9x^2 + 184)/((x^2 + 16)(x^2 + 36)) = A/(x^2 + 16) + B/(x^2 + 36).\newlineMultiply through by (x2+16)(x2+36)(x^2 + 16)(x^2 + 36) to clear the denominators:\newline9x2+184=A(x2+36)+B(x2+16)9x^2 + 184 = A(x^2 + 36) + B(x^2 + 16).
  2. Solve for A and B: Step 22: Solve for A and B.\newlineEquating coefficients, we get:\newlineFor x2x^2: 9=A+B9 = A + B\newlineFor constant terms: 184=36A+16B184 = 36A + 16B\newlineSolving these equations:\newline9=A+B9 = A + B (11)\newline184=36A+16B184 = 36A + 16B (22)\newlineFrom (11), B=9AB = 9 - A.\newlineSubstitute into (22):\newline184=36A+16(9A)184 = 36A + 16(9 - A)\newline184=36A+14416A184 = 36A + 144 - 16A\newline20A=4020A = 40\newlineA=2A = 2, 9=A+B9 = A + B00.
  3. Write Decomposition: Step 33: Write the partial fraction decomposition.\newlineSubstitute values of AA and BB back:\newline(9x2+184)/((x2+16)(x2+36))=2x2+16+7x2+36(9x^2 + 184)/((x^2 + 16)(x^2 + 36)) = \frac{2}{x^2 + 16} + \frac{7}{x^2 + 36}.
  4. Expand Power Series: Step 44: Expand each term into a power series.\newlineFor 2x2+16\frac{2}{x^2 + 16}, use the geometric series formula:\newline2x2+16=2116(1+x216)\frac{2}{x^2 + 16} = 2 \cdot \frac{1}{16(1 + \frac{x^2}{16})}\newline=18n=0((1)n(x216)n)= \frac{1}{8} \cdot \sum_{n=0}^{\infty} ((-1)^n (\frac{x^2}{16})^n)\newline=n=0((1)nx2n128n)= \sum_{n=0}^{\infty} ((-1)^n \frac{x^{2n}}{128^n}).\newlineFor 7x2+36\frac{7}{x^2 + 36}, similarly:\newline7x2+36=7136(1+x236)\frac{7}{x^2 + 36} = 7 \cdot \frac{1}{36(1 + \frac{x^2}{36})}\newline=736n=0((1)n(x236)n)= \frac{7}{36} \cdot \sum_{n=0}^{\infty} ((-1)^n (\frac{x^2}{36})^n)\newline=n=0((1)n7x2n1296n)= \sum_{n=0}^{\infty} ((-1)^n \frac{7x^{2n}}{1296^n}).

More problems from Sum of finite series not start from 1