Q. Use partial fractions to find the power series of the function: (x2+16)(x2+36)9x2+184∑n=0∞____________
Express Function: Step 1: Express the function using partial fractions.We need to decompose the function (9x2+184)/((x2+16)(x2+36)) into simpler fractions.Assume (9x2+184)/((x2+16)(x2+36))=A/(x2+16)+B/(x2+36).Multiply through by (x2+16)(x2+36) to clear the denominators:9x2+184=A(x2+36)+B(x2+16).
Solve for A and B: Step 2: Solve for A and B.Equating coefficients, we get:For x2: 9=A+BFor constant terms: 184=36A+16BSolving these equations:9=A+B (1)184=36A+16B (2)From (1), B=9−A.Substitute into (2):184=36A+16(9−A)184=36A+144−16A20A=40A=2, 9=A+B0.
Write Decomposition: Step 3: Write the partial fraction decomposition.Substitute values of A and B back:(9x2+184)/((x2+16)(x2+36))=x2+162+x2+367.
Expand Power Series: Step 4: Expand each term into a power series.For x2+162, use the geometric series formula:x2+162=2⋅16(1+16x2)1=81⋅∑n=0∞((−1)n(16x2)n)=∑n=0∞((−1)n128nx2n).For x2+367, similarly:x2+367=7⋅36(1+36x2)1=367⋅∑n=0∞((−1)n(36x2)n)=∑n=0∞((−1)n1296n7x2n).
More problems from Sum of finite series not start from 1