Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,3),(1,6),(2,12)}. Which equation represents 
f(x) ?

f(x)=6x

f(x)=3(2)^(x)

f(x)=3x+3

f(x)=x^(2)+3

Three points on the graph of the function f(x) f(x) are {(0,3),(1,6),(2,12)} \{(0,3),(1,6),(2,12)\} . Which equation represents f(x) f(x) ?\newlinef(x)=6x f(x)=6 x \newlinef(x)=3(2)x f(x)=3(2)^{x} \newlinef(x)=3x+3 f(x)=3 x+3 \newlinef(x)=x2+3 f(x)=x^{2}+3

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,3),(1,6),(2,12)} \{(0,3),(1,6),(2,12)\} . Which equation represents f(x) f(x) ?\newlinef(x)=6x f(x)=6 x \newlinef(x)=3(2)x f(x)=3(2)^{x} \newlinef(x)=3x+3 f(x)=3 x+3 \newlinef(x)=x2+3 f(x)=x^{2}+3
  1. Test Function 11: We will test each given function with the points provided to see which one fits all three points.\newlineLet's start with the first option f(x)=6xf(x) = 6x.\newlineWe will substitute x=0x = 0 into the function and check if the output is 33.\newlinef(0)=6×0=0f(0) = 6 \times 0 = 0
  2. Test Function 22: Since f(0)f(0) should equal 33, but we got 00, the first option f(x)=6xf(x) = 6x does not fit the given point (0,3)(0,3).
  3. Check Function 22: Now let's test the second option f(x)=3(2)xf(x) = 3(2)^x.\newlineSubstitute x=0x = 0 into the function and check if the output is 33.\newlinef(0)=3×(2)0=3×1=3f(0) = 3 \times (2)^0 = 3 \times 1 = 3
  4. Check Function 22: The second option f(x)=3(2)xf(x) = 3(2)^x fits the first point (0,3)(0,3). Now let's check the second point (1,6)(1,6).\newlineSubstitute x=1x = 1 into the function and check if the output is 66.\newlinef(1)=3×(2)1=3×2=6f(1) = 3 \times (2)^1 = 3 \times 2 = 6
  5. Final Result: The second option f(x)=3(2)xf(x) = 3(2)^x also fits the second point (1,6)(1,6). Now let's check the third point (2,12)(2,12).\newlineSubstitute x=2x = 2 into the function and check if the output is 1212.\newlinef(2)=3×(2)2=3×4=12f(2) = 3 \times (2)^2 = 3 \times 4 = 12
  6. Final Result: The second option f(x)=3(2)xf(x) = 3(2)^x also fits the second point (1,6)(1,6). Now let's check the third point (2,12)(2,12). Substitute x=2x = 2 into the function and check if the output is 1212. f(2)=3×(2)2=3×4=12f(2) = 3 \times (2)^2 = 3 \times 4 = 12 The second option f(x)=3(2)xf(x) = 3(2)^x fits all three points (0,3),(1,6),(0,3), (1,6), and (2,12)(2,12). Therefore, we have found the correct function that represents f(x)f(x).

More problems from Write a quadratic function from its x-intercepts and another point