Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,3),(1,6),(2,9)}. Which equation represents 
f(x) ?

f(x)=3*2^(x)

f(x)=(1)/(3)x-1

f(x)=3x+3

f(x)=x^(2)+3

Three points on the graph of the function f(x) f(x) are {(0,3),(1,6),(2,9)} \{(0,3),(1,6),(2,9)\} . Which equation represents f(x) f(x) ?\newlinef(x)=32x f(x)=3 \cdot 2^{x} \newlinef(x)=13x1 f(x)=\frac{1}{3} x-1 \newlinef(x)=3x+3 f(x)=3 x+3 \newlinef(x)=x2+3 f(x)=x^{2}+3

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,3),(1,6),(2,9)} \{(0,3),(1,6),(2,9)\} . Which equation represents f(x) f(x) ?\newlinef(x)=32x f(x)=3 \cdot 2^{x} \newlinef(x)=13x1 f(x)=\frac{1}{3} x-1 \newlinef(x)=3x+3 f(x)=3 x+3 \newlinef(x)=x2+3 f(x)=x^{2}+3
  1. Test Function 0,30,3: We will test each given function with the points provided to see which one matches all three points.\newlineFirst, let's test the point 0,30,3 with each function.
  2. Test Functions (11,66): Testing f(x)=32xf(x)=3\cdot2^{x} with x=0x=0:f(0)=320=31=3f(0)=3\cdot2^{0}=3\cdot1=3This matches the point (0,3)(0,3).
  3. Test Functions (2,9)(2,9): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0: f(0)=1301=01=1f(0)=\frac{1}{3}\cdot 0-1=0-1=-1 This does not match the point (0,3)(0,3). Since this function does not match the first point, it cannot be the correct function.
  4. Test Functions (2,9)(2,9): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0:
    f(0)=1301=01=1f(0)=\frac{1}{3}\cdot 0-1=0-1=-1
    This does not match the point (0,3)(0,3).
    Since this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0:
    f(0)=30+3=0+3=3f(0)=3\cdot 0+3=0+3=3
    This matches the point (0,3)(0,3).
  5. Test Functions (2,9)(2,9): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0:\newlinef(0)=1301=01=1f(0)=\frac{1}{3}\cdot 0-1=0-1=-1\newlineThis does not match the point (0,3)(0,3).\newlineSince this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0:\newlinef(0)=30+3=0+3=3f(0)=3\cdot 0+3=0+3=3\newlineThis matches the point (0,3)(0,3).Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=0:\newlinef(x)=13x1f(x)=\frac{1}{3}x-111\newlineThis matches the point (0,3)(0,3).
  6. Test Functions (22,99): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0:
    f(0)=1301=01=1f(0)=\frac{1}{3}\cdot0-1=0-1=-1
    This does not match the point (0,3)(0,3).
    Since this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0:
    f(0)=30+3=0+3=3f(0)=3\cdot0+3=0+3=3
    This matches the point (0,3)(0,3).Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=0:
    x=0x=000
    This matches the point (0,3)(0,3).Now let's test the point x=0x=022 with the functions that matched the first point.
  7. Test Functions (2,9)(2,9): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0:f(0)=1301=01=1f(0)=\frac{1}{3}\cdot0-1=0-1=-1This does not match the point (0,3)(0,3).Since this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0:f(0)=30+3=0+3=3f(0)=3\cdot0+3=0+3=3This matches the point (0,3)(0,3).Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=0:f(x)=13x1f(x)=\frac{1}{3}x-111This matches the point (0,3)(0,3).Now let's test the point f(x)=13x1f(x)=\frac{1}{3}x-133 with the functions that matched the first point.Testing f(x)=13x1f(x)=\frac{1}{3}x-144 with f(x)=13x1f(x)=\frac{1}{3}x-155:f(x)=13x1f(x)=\frac{1}{3}x-166This matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.
  8. Test Functions (2,9)(2,9): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0: f(0)=1301=01=1f(0)=\frac{1}{3}\cdot 0-1=0-1=-1 This does not match the point (0,3)(0,3). Since this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0: f(0)=30+3=0+3=3f(0)=3\cdot 0+3=0+3=3 This matches the point (0,3)(0,3).Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=0: f(x)=13x1f(x)=\frac{1}{3}x-111 This matches the point (0,3)(0,3).Now let's test the point f(x)=13x1f(x)=\frac{1}{3}x-133 with the functions that matched the first point.Testing f(x)=13x1f(x)=\frac{1}{3}x-144 with f(x)=13x1f(x)=\frac{1}{3}x-155: f(x)=13x1f(x)=\frac{1}{3}x-166 This matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.Testing f(x)=3x+3f(x)=3x+3 with f(x)=13x1f(x)=\frac{1}{3}x-155: x=0x=000 This matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.
  9. Test Functions (2,9)(2,9): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0: \newlinef(0)=1301=01=1f(0)=\frac{1}{3}\cdot 0-1=0-1=-1\newlineThis does not match the point (0,3)(0,3). \newlineSince this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0: \newlinef(0)=30+3=0+3=3f(0)=3\cdot 0+3=0+3=3\newlineThis matches the point (0,3)(0,3).Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=0: \newlinef(x)=13x1f(x)=\frac{1}{3}x-111\newlineThis matches the point (0,3)(0,3).Now let's test the point f(x)=13x1f(x)=\frac{1}{3}x-133 with the functions that matched the first point.Testing f(x)=13x1f(x)=\frac{1}{3}x-144 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinef(x)=13x1f(x)=\frac{1}{3}x-166\newlineThis matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.Testing f(x)=3x+3f(x)=3x+3 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinex=0x=000\newlineThis matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.Testing f(x)=x2+3f(x)=x^{2}+3 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinex=0x=044\newlineThis does not match the point f(x)=13x1f(x)=\frac{1}{3}x-133. \newlineSince this function does not match the second point, it cannot be the correct function.
  10. Test Functions (22,99): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0:
    f(0)=1301=01=1f(0)=\frac{1}{3}\cdot0-1=0-1=-1
    This does not match the point (0,3)(0,3).
    Since this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0:
    f(0)=30+3=0+3=3f(0)=3\cdot0+3=0+3=3
    This matches the point (0,3)(0,3).Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=0:
    x=0x=000
    This matches the point (0,3)(0,3).Now let's test the point x=0x=022 with the functions that matched the first point.Testing x=0x=033 with x=0x=044:
    x=0x=055
    This matches the point x=0x=022.Testing f(x)=3x+3f(x)=3x+3 with x=0x=044:
    x=0x=099
    This matches the point x=0x=022.Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=044:
    f(0)=1301=01=1f(0)=\frac{1}{3}\cdot0-1=0-1=-133
    This does not match the point x=0x=022.
    Since this function does not match the second point, it cannot be the correct function.Finally, let's test the point f(0)=1301=01=1f(0)=\frac{1}{3}\cdot0-1=0-1=-155 with the functions that matched the first two points.
  11. Test Functions (2,9)(2,9): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0: \newlinef(0)=1301=01=1f(0)=\frac{1}{3}\cdot 0-1=0-1=-1\newlineThis does not match the point (0,3)(0,3). \newlineSince this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0: \newlinef(0)=30+3=0+3=3f(0)=3\cdot 0+3=0+3=3\newlineThis matches the point (0,3)(0,3).Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=0: \newlinef(x)=13x1f(x)=\frac{1}{3}x-111\newlineThis matches the point (0,3)(0,3).Now let's test the point f(x)=13x1f(x)=\frac{1}{3}x-133 with the functions that matched the first point.Testing f(x)=13x1f(x)=\frac{1}{3}x-144 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinef(x)=13x1f(x)=\frac{1}{3}x-166\newlineThis matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.Testing f(x)=3x+3f(x)=3x+3 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinex=0x=000\newlineThis matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.Testing f(x)=x2+3f(x)=x^{2}+3 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinex=0x=044\newlineThis does not match the point f(x)=13x1f(x)=\frac{1}{3}x-133. \newlineSince this function does not match the second point, it cannot be the correct function.Finally, let's test the point (2,9)(2,9) with the functions that matched the first two points.Testing f(x)=13x1f(x)=\frac{1}{3}x-144 with x=0x=088: \newlinex=0x=099\newlineThis does not match the point (2,9)(2,9). \newlineSince this function does not match the third point, it cannot be the correct function.
  12. Test Functions (2,9)(2,9): Testing f(x)=13x1f(x)=\frac{1}{3}x-1 with x=0x=0: \newlinef(0)=1301=01=1f(0)=\frac{1}{3}\cdot 0-1=0-1=-1\newlineThis does not match the point (0,3)(0,3). \newlineSince this function does not match the first point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=0: \newlinef(0)=30+3=0+3=3f(0)=3\cdot 0+3=0+3=3\newlineThis matches the point (0,3)(0,3).Testing f(x)=x2+3f(x)=x^{2}+3 with x=0x=0: \newlinef(x)=13x1f(x)=\frac{1}{3}x-111\newlineThis matches the point (0,3)(0,3).Now let's test the point f(x)=13x1f(x)=\frac{1}{3}x-133 with the functions that matched the first point.Testing f(x)=13x1f(x)=\frac{1}{3}x-144 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinef(x)=13x1f(x)=\frac{1}{3}x-166\newlineThis matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.Testing f(x)=3x+3f(x)=3x+3 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinex=0x=000\newlineThis matches the point f(x)=13x1f(x)=\frac{1}{3}x-133.Testing f(x)=x2+3f(x)=x^{2}+3 with f(x)=13x1f(x)=\frac{1}{3}x-155: \newlinex=0x=044\newlineThis does not match the point f(x)=13x1f(x)=\frac{1}{3}x-133. \newlineSince this function does not match the second point, it cannot be the correct function.Finally, let's test the point (2,9)(2,9) with the functions that matched the first two points.Testing f(x)=13x1f(x)=\frac{1}{3}x-144 with x=0x=088: \newlinex=0x=099\newlineThis does not match the point (2,9)(2,9). \newlineSince this function does not match the third point, it cannot be the correct function.Testing f(x)=3x+3f(x)=3x+3 with x=0x=088: \newlinef(0)=1301=01=1f(0)=\frac{1}{3}\cdot 0-1=0-1=-133\newlineThis matches the point (2,9)(2,9). \newlineSince this function matches all three points, it must be the correct function.

More problems from Write a quadratic function from its x-intercepts and another point