Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,1),(1,4),(2,9)}. Which equation represents 
f(x) ?

f(x)=5x-1

f(x)=4^(x)

f(x)=(x+1)^(2)

f(x)=3x+1

Three points on the graph of the function f(x) f(x) are {(0,1),(1,4),(2,9)} \{(0,1),(1,4),(2,9)\} . Which equation represents f(x) f(x) ?\newlinef(x)=5x1 f(x)=5 x-1 \newlinef(x)=4x f(x)=4^{x} \newlinef(x)=(x+1)2 f(x)=(x+1)^{2} \newlinef(x)=3x+1 f(x)=3 x+1

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,1),(1,4),(2,9)} \{(0,1),(1,4),(2,9)\} . Which equation represents f(x) f(x) ?\newlinef(x)=5x1 f(x)=5 x-1 \newlinef(x)=4x f(x)=4^{x} \newlinef(x)=(x+1)2 f(x)=(x+1)^{2} \newlinef(x)=3x+1 f(x)=3 x+1
  1. Test Equation f(x)f(x): Test the first equation f(x)=5x1f(x) = 5x - 1 with the given points.\newlineSubstitute x=0x = 0 into f(x)=5x1f(x) = 5x - 1 to see if it gives y=1y = 1.\newlinef(0)=5(0)1=1f(0) = 5(0) - 1 = -1\newlineCheck if this matches the given point (0,1)(0,1).
  2. Check f(x)=5x1f(x) = 5x - 1: Since f(0)=1f(0) = -1 does not match the given point (0,1)(0,1), we can conclude that f(x)=5x1f(x) = 5x - 1 is not the correct equation.
  3. Test Equation f(x)f(x): Test the second equation f(x)=4xf(x) = 4^{x} with the given points.\newlineSubstitute x=0x = 0 into f(x)=4xf(x) = 4^{x} to see if it gives y=1y = 1.\newlinef(0)=40=1f(0) = 4^{0} = 1\newlineCheck if this matches the given point (0,1)(0,1).
  4. Check f(x)=4xf(x) = 4^{x}: Since f(0)=1f(0) = 1 matches the given point (0,1)(0,1), we proceed to test the next point (1,4)(1,4). Substitute x=1x = 1 into f(x)=4xf(x) = 4^{x} to see if it gives y=4y = 4. f(1)=41=4f(1) = 4^{1} = 4 Check if this matches the given point (1,4)(1,4).
  5. Test Equation f(x)f(x): Since f(1)=4f(1) = 4 matches the given point (1,4)(1,4), we proceed to test the last point (2,9)(2,9).\newlineSubstitute x=2x = 2 into f(x)=4xf(x) = 4^{x} to see if it gives y=9y = 9.\newlinef(2)=42=16f(2) = 4^{2} = 16\newlineCheck if this matches the given point (2,9)(2,9).
  6. Check f(x)=(x+1)2f(x) = (x + 1)^{2}: Since f(2)=16f(2) = 16 does not match the given point (2,9)(2,9), we can conclude that f(x)=4xf(x) = 4^{x} is not the correct equation.
  7. Check f(x)=(x+1)2f(x) = (x + 1)^{2}: Since f(2)=16f(2) = 16 does not match the given point (2,9)(2,9), we can conclude that f(x)=4xf(x) = 4^{x} is not the correct equation.Test the third equation f(x)=(x+1)2f(x) = (x + 1)^{2} with the given points.\newlineSubstitute x=0x = 0 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives y=1y = 1.\newlinef(0)=(0+1)2=1f(0) = (0 + 1)^{2} = 1\newlineCheck if this matches the given point (0,1)(0,1).
  8. Check f(x)=(x+1)2f(x) = (x + 1)^{2}: Since f(2)=16f(2) = 16 does not match the given point (2,9)(2,9), we can conclude that f(x)=4xf(x) = 4^{x} is not the correct equation.Test the third equation f(x)=(x+1)2f(x) = (x + 1)^{2} with the given points.\newlineSubstitute x=0x = 0 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives y=1y = 1.\newlinef(0)=(0+1)2=1f(0) = (0 + 1)^{2} = 1\newlineCheck if this matches the given point (0,1)(0,1).Since f(2)=16f(2) = 1600 matches the given point (0,1)(0,1), we proceed to test the next point f(2)=16f(2) = 1622.\newlineSubstitute f(2)=16f(2) = 1633 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives f(2)=16f(2) = 1655.\newlinef(2)=16f(2) = 1666\newlineCheck if this matches the given point f(2)=16f(2) = 1622.
  9. Check f(x)=(x+1)2f(x) = (x + 1)^{2}: Since f(2)=16f(2) = 16 does not match the given point (2,9)(2,9), we can conclude that f(x)=4xf(x) = 4^{x} is not the correct equation.Test the third equation f(x)=(x+1)2f(x) = (x + 1)^{2} with the given points.\newlineSubstitute x=0x = 0 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives y=1y = 1.\newlinef(0)=(0+1)2=1f(0) = (0 + 1)^{2} = 1\newlineCheck if this matches the given point (0,1)(0,1).Since f(2)=16f(2) = 1600 matches the given point (0,1)(0,1), we proceed to test the next point f(2)=16f(2) = 1622.\newlineSubstitute f(2)=16f(2) = 1633 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives f(2)=16f(2) = 1655.\newlinef(2)=16f(2) = 1666\newlineCheck if this matches the given point f(2)=16f(2) = 1622.Since f(2)=16f(2) = 1688 matches the given point f(2)=16f(2) = 1622, we proceed to test the last point (2,9)(2,9).\newlineSubstitute (2,9)(2,9)11 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives (2,9)(2,9)33.\newline(2,9)(2,9)44\newlineCheck if this matches the given point (2,9)(2,9).
  10. Check f(x)=(x+1)2f(x) = (x + 1)^{2}: Since f(2)=16f(2) = 16 does not match the given point (2,9)(2,9), we can conclude that f(x)=4xf(x) = 4^{x} is not the correct equation.Test the third equation f(x)=(x+1)2f(x) = (x + 1)^{2} with the given points.\newlineSubstitute x=0x = 0 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives y=1y = 1.\newlinef(0)=(0+1)2=1f(0) = (0 + 1)^{2} = 1\newlineCheck if this matches the given point (0,1)(0,1).Since f(2)=16f(2) = 1600 matches the given point (0,1)(0,1), we proceed to test the next point f(2)=16f(2) = 1622.\newlineSubstitute f(2)=16f(2) = 1633 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives f(2)=16f(2) = 1655.\newlinef(2)=16f(2) = 1666\newlineCheck if this matches the given point f(2)=16f(2) = 1622.Since f(2)=16f(2) = 1688 matches the given point f(2)=16f(2) = 1622, we proceed to test the last point (2,9)(2,9).\newlineSubstitute (2,9)(2,9)11 into f(x)=(x+1)2f(x) = (x + 1)^{2} to see if it gives (2,9)(2,9)33.\newline(2,9)(2,9)44\newlineCheck if this matches the given point (2,9)(2,9).Since (2,9)(2,9)66 matches the given point (2,9)(2,9), we can conclude that f(x)=(x+1)2f(x) = (x + 1)^{2} is the correct equation that represents (2,9)(2,9)99.

More problems from Write a quadratic function from its x-intercepts and another point