Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The volume of a rectangular prism is 
140in^(3). Carter measures the sides to be 2.22 in by 10 in by 
6.59in. In calculating the volume, what is the relative error, to the nearest thousandth.
Answer:

The volume of a rectangular prism is 140in3 140 \mathrm{in}^{3} . Carter measures the sides to be 22.2222 in by 1010 in by 6.59in 6.59 \mathrm{in} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The volume of a rectangular prism is 140in3 140 \mathrm{in}^{3} . Carter measures the sides to be 22.2222 in by 1010 in by 6.59in 6.59 \mathrm{in} . In calculating the volume, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Volume: Calculate the volume using the measured sides.\newlineThe formula for the volume of a rectangular prism is V=length×width×heightV = \text{length} \times \text{width} \times \text{height}.\newlineUsing Carter's measurements, we calculate the volume as follows:\newlineV=2.22in×10in×6.59inV = 2.22 \, \text{in} \times 10 \, \text{in} \times 6.59 \, \text{in}.
  2. Perform Multiplication: Perform the multiplication to find the calculated volume.\newlineVcalculated=2.22×10×6.59.V_{\text{calculated}} = 2.22 \times 10 \times 6.59.\newlineVcalculated=146.358 in3.V_{\text{calculated}} = 146.358 \text{ in}^3.
  3. Compare Volumes: Compare the calculated volume with the given volume.\newlineThe given volume is Vgiven=140V_{\text{given}} = 140 in3^3.\newlineThe calculated volume from Step 22 is Vcalculated=146.358V_{\text{calculated}} = 146.358 in3^3.
  4. Calculate Absolute Error: Calculate the absolute error.\newlineAbsolute error = VcalculatedVgiven|V_{\text{calculated}} - V_{\text{given}}|.\newlineAbsolute error = 146.358140|146.358 - 140|.\newlineAbsolute error = 6.3586.358 in³.
  5. Calculate Relative Error: Calculate the relative error.\newlineRelative error = (Absolute error/Vgiven)×100%(\text{Absolute error} / V_{\text{given}}) \times 100\%.\newlineRelative error = (6.358/140)×100%(6.358 / 140) \times 100\%.
  6. Convert Relative Error: Perform the division and multiplication to find the relative error.\newlineRelative error = (6.358/140)×100(6.358 / 140) \times 100.\newlineRelative error 0.04541428571×100\approx 0.04541428571 \times 100.\newlineRelative error 4.541428571%\approx 4.541428571\%.
  7. Convert Relative Error: Perform the division and multiplication to find the relative error.\newlineRelative error = (6.358/140)×100(6.358 / 140) \times 100.\newlineRelative error 0.04541428571×100\approx 0.04541428571 \times 100.\newlineRelative error 4.541428571%\approx 4.541428571\%.Convert the relative error to the nearest thousandth.\newlineRelative error 4.541%\approx 4.541\%.\newlineTo express this as a decimal to the nearest thousandth, we divide by 100100 and round to three decimal places.\newlineRelative error 0.045\approx 0.045 (rounded to three decimal places).

More problems from Pythagorean Theorem and its converse