Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
The polynomial
p
(
x
)
=
x
3
−
19
x
−
30
p(x) = x^3 - 19x - 30
p
(
x
)
=
x
3
−
19
x
−
30
has a known factor of
(
x
+
2
)
(x + 2)
(
x
+
2
)
. Rewrite
p
(
x
)
p(x)
p
(
x
)
as a product of linear
factors
.
View step-by-step help
Home
Math Problems
Algebra 2
Factor using a quadratic pattern
Full solution
Q.
The polynomial
p
(
x
)
=
x
3
−
19
x
−
30
p(x) = x^3 - 19x - 30
p
(
x
)
=
x
3
−
19
x
−
30
has a known factor of
(
x
+
2
)
(x + 2)
(
x
+
2
)
. Rewrite
p
(
x
)
p(x)
p
(
x
)
as a product of linear factors.
Polynomial Division:
First, let's do
polynomial division
to divide
p
(
x
)
p(x)
p
(
x
)
by
(
x
+
2
)
(x+2)
(
x
+
2
)
.
Set Up Division:
Set up the division:
(
x
3
−
19
x
−
30
)
÷
(
x
+
2
)
(x^3 - 19x - 30) \div (x + 2)
(
x
3
−
19
x
−
30
)
÷
(
x
+
2
)
.
Divide
x
3
x^3
x
3
:
Divide
x
3
x^3
x
3
by
x
x
x
to get
x
2
x^2
x
2
. Multiply
(
x
+
2
)
(x + 2)
(
x
+
2
)
by
x
2
x^2
x
2
to get
x
3
+
2
x
2
x^3 + 2x^2
x
3
+
2
x
2
. Subtract this from the original polynomial to get
−
2
x
2
−
19
x
-2x^2 - 19x
−
2
x
2
−
19
x
.
Divide
−
2
x
2
-2x^2
−
2
x
2
:
Now, divide
−
2
x
2
-2x^2
−
2
x
2
by
x
x
x
to get
−
2
x
-2x
−
2
x
. Multiply
(
x
+
2
)
(x + 2)
(
x
+
2
)
by
−
2
x
-2x
−
2
x
to get
−
2
x
2
−
4
x
-2x^2 - 4x
−
2
x
2
−
4
x
. Subtract this from
−
2
x
2
−
19
x
-2x^2 - 19x
−
2
x
2
−
19
x
to get
−
15
x
-15x
−
15
x
.
Divide
−
15
x
-15x
−
15
x
:
Next, divide
−
15
x
-15x
−
15
x
by
x
x
x
to get
−
15
-15
−
15
. Multiply
(
x
+
2
)
(x + 2)
(
x
+
2
)
by
−
15
-15
−
15
to get
−
15
x
−
30
-15x - 30
−
15
x
−
30
. Subtract this from
−
15
x
−
30
-15x - 30
−
15
x
−
30
to get
0
0
0
.
Factor Quadratic:
So, the result of the division is
x
2
−
2
x
−
15
x^2 - 2x - 15
x
2
−
2
x
−
15
. Now we need to factor this quadratic.
Find Two Numbers:
Looking for two numbers that multiply to
−
15
-15
−
15
and add up to
−
2
-2
−
2
. Those numbers are
−
5
-5
−
5
and
3
3
3
.
Factor Quadratic:
Factor the quadratic to get
(
x
−
5
)
(
x
+
3
)
(x - 5)(x + 3)
(
x
−
5
)
(
x
+
3
)
.
Linear Factors:
Now we have all the linear factors of
p
(
x
)
p(x)
p
(
x
)
:
(
x
+
2
)
(
x
−
5
)
(
x
+
3
)
(x + 2)(x - 5)(x + 3)
(
x
+
2
)
(
x
−
5
)
(
x
+
3
)
.
More problems from Factor using a quadratic pattern
Question
Factor out the greatest common factor. If the greatest common factor is
1
1
1
, just retype the polynomial.
\newline
4
x
3
−
6
x
2
4x^3 - 6x^2
4
x
3
−
6
x
2
\newline
______
Get tutor help
Posted 9 months ago
Question
Factor
x
4
+
8
x
2
+
16
x^4 + 8x^2 + 16
x
4
+
8
x
2
+
16
completely.
\newline
All factors in your answer should have integer coefficients.
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the binomial that completes the factorization.
\newline
t
3
+
u
3
=
(
‾
)
(
t
2
−
t
u
+
u
2
)
t^3 + u^3 = (\underline{\hspace{1cm}}) (t^2 - tu + u^2)
t
3
+
u
3
=
(
)
(
t
2
−
t
u
+
u
2
)
Get tutor help
Posted 9 months ago
Question
Factor.
\newline
g
2
−
11
g
+
18
g^2 - 11g + 18
g
2
−
11
g
+
18
Get tutor help
Posted 9 months ago
Question
Factor.
\newline
2
y
3
−
y
2
+
16
y
−
8
2y^3 - y^2 + 16y - 8
2
y
3
−
y
2
+
16
y
−
8
\newline
______
\newline
Get tutor help
Posted 9 months ago
Question
Factor.
\newline
2
x
8
+
7
x
2
2x^8 + 7x^2
2
x
8
+
7
x
2
\newline
______
Get tutor help
Posted 10 months ago
Question
Factor.
\newline
9
y
12
+
4
y
5
−
y
2
9y^{12} + 4y^5 - y^2
9
y
12
+
4
y
5
−
y
2
\newline
______
Get tutor help
Posted 9 months ago
Question
Factor.
\newline
6
a
4
+
3
a
3
−
a
+
2
6a^4 + 3a^3 - a + 2
6
a
4
+
3
a
3
−
a
+
2
\newline
_____
Get tutor help
Posted 9 months ago
Question
Factor.
\newline
4
c
7
−
2
c
5
+
c
2
−
5
4c^7 - 2c^5 + c^2 - 5
4
c
7
−
2
c
5
+
c
2
−
5
\newline
_____
Get tutor help
Posted 9 months ago
Question
Factor.
\newline
7
m
9
+
2
m
6
−
m
3
+
4
m
−
10
7m^9 + 2m^6 - m^3 + 4m - 10
7
m
9
+
2
m
6
−
m
3
+
4
m
−
10
\newline
_____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant