Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The kinetic energy, measured in kilogram meters squared per second squared 
((kg*m^(2))/(s^(2))), of the International Space Station is approximately:

13,340,250,000,000(kg*m^(2))/(s^(2))
If 1 Joule 
(J) is equal to 
1(kg*m^(2))/(s^(2)) , and 1 terajoule 
(TJ) is equal to 
10^(12)J, what is the approximate kinetic energy of the Space Station in terajoules to the nearest hundredth?
Choose 1 answer:
(A) 
0.1334TJ
(B) 
1.334TJ
(C) 
13.34TJ
(D) 
13.34*10^(12)TJ

The kinetic energy, measured in kilogram meters squared per second squared (kgm2s2)\left(\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}\right), of the International Space Station is approximately:\newline13,340,250,000,000kgm2s213,340,250,000,000 \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}\newlineIf 11 Joule JJ is equal to 1kgm2s21 \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}, and 11 terajoule TJTJ is equal to 1012J10^{12}J, what is the approximate kinetic energy of the Space Station in terajoules to the nearest hundredth?\newlineChoose 11 answer:\newline(A) 0.1334TJ0.1334\,TJ\newline(B) 1.334TJ1.334\,TJ\newline(C) 13.34TJ13.34\,TJ\newline(D) 13.34×1012TJ13.34 \times 10^{12}\,TJ

Full solution

Q. The kinetic energy, measured in kilogram meters squared per second squared (kgm2s2)\left(\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}\right), of the International Space Station is approximately:\newline13,340,250,000,000kgm2s213,340,250,000,000 \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}\newlineIf 11 Joule JJ is equal to 1kgm2s21 \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}, and 11 terajoule TJTJ is equal to 1012J10^{12}J, what is the approximate kinetic energy of the Space Station in terajoules to the nearest hundredth?\newlineChoose 11 answer:\newline(A) 0.1334TJ0.1334\,TJ\newline(B) 1.334TJ1.334\,TJ\newline(C) 13.34TJ13.34\,TJ\newline(D) 13.34×1012TJ13.34 \times 10^{12}\,TJ
  1. Understand conversion factors: Understand the conversion factors.\newline11 Joule (J) is equal to 1(kgm2)/(s2)1 \, (\text{kg} \cdot \text{m}^{2})/(\text{s}^{2}).\newline11 terajoule (TJ) is equal to 1012J10^{12} \, \text{J}.
  2. Convert to Joules: Convert the given kinetic energy in (kgm2)/(s2)(\text{kg}\cdot\text{m}^{2})/(\text{s}^{2}) to Joules.\newlineThe given kinetic energy is 13,340,250,000,00013,340,250,000,000 (kgm2)/(s2)(\text{kg}\cdot\text{m}^{2})/(\text{s}^{2}).\newlineSince 11 (kgm2)/(s2)(\text{kg}\cdot\text{m}^{2})/(\text{s}^{2}) is equal to 11 J, the kinetic energy in Joules is also 13,340,250,000,00013,340,250,000,000 J.
  3. Convert to terajoules: Convert the kinetic energy from Joules to terajoules.\newlineTo convert from Joules to terajoules, divide the energy in Joules by 101210^{12}.\newline13,340,250,000,000J/1012=13.34025TJ.13,340,250,000,000 \, \text{J} / 10^{12} = 13.34025 \, \text{TJ}.
  4. Round the result: Round the result to the nearest hundredth.\newlineRounding 13.3402513.34025 to the nearest hundredth gives us 13.3413.34 TJ.

More problems from Solve quadratic equations: word problems