Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The inverse of the function 
f(x)=(x+1)/(x-2) is
(1) 
f^(-1)(x)=(x+1)/(x+2)
(3) 
f^(-1)(x)=(x+1)/(x-2)
(2) 
f^(-1)(x)=(2x+1)/(x-1)
(4) 
f^(-1)(x)=(x-1)/(x+1)

The inverse of the function f(x)=x+1x2 f(x)=\frac{x+1}{x-2} is\newline(11) f1(x)=x+1x+2 f^{-1}(x)=\frac{x+1}{x+2} \newline(33) f1(x)=x+1x2 f^{-1}(x)=\frac{x+1}{x-2} \newline(22) f1(x)=2x+1x1 f^{-1}(x)=\frac{2 x+1}{x-1} \newline(44) f1(x)=x1x+1 f^{-1}(x)=\frac{x-1}{x+1}

Full solution

Q. The inverse of the function f(x)=x+1x2 f(x)=\frac{x+1}{x-2} is\newline(11) f1(x)=x+1x+2 f^{-1}(x)=\frac{x+1}{x+2} \newline(33) f1(x)=x+1x2 f^{-1}(x)=\frac{x+1}{x-2} \newline(22) f1(x)=2x+1x1 f^{-1}(x)=\frac{2 x+1}{x-1} \newline(44) f1(x)=x1x+1 f^{-1}(x)=\frac{x-1}{x+1}
  1. Replace with y: To find the inverse of the function f(x)=x+1x2f(x) = \frac{x+1}{x-2}, we need to switch the roles of xx and yy in the equation and then solve for yy. Let's start by replacing f(x)f(x) with yy:y=x+1x2y = \frac{x+1}{x-2}
  2. Interchange xx and yy: Now, interchange xx and yy to find the inverse function: x=y+1y2x = \frac{y+1}{y-2}
  3. Multiply by (y2)(y-2): Next, we need to solve for yy. To do this, we'll multiply both sides of the equation by (y2)(y-2) to get rid of the fraction:\newlinex(y2)=y+1x(y-2) = y+1
  4. Distribute xx: Distribute xx on the left side of the equation: xy2x=y+1xy - 2x = y + 1
  5. Isolate y: To isolate y, we need to get all the terms with y on one side and the constants on the other. Let's move the y term from the right to the left side by subtracting y from both sides: xyy=2x+1xy - y = 2x + 1
  6. Factor out yy: Factor out yy from the left side of the equation:\newliney(x1)=2x+1y(x - 1) = 2x + 1
  7. Divide by (x1)(x - 1): Now, divide both sides by (x1)(x - 1) to solve for yy:y=2x+1x1y = \frac{2x + 1}{x - 1}
  8. Inverse function found: We have found the inverse function, which is: f1(x)=2x+1x1f^{-1}(x) = \frac{2x + 1}{x - 1}

More problems from Multiplication with rational exponents