Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of function 
h is shown below. Let 
g(x)=int_(1)^(x)h(t)dt.
Evaluate 
g(4).

g(4)=

The graph of function h h is shown below. Let g(x)=1xh(t)dt g(x)=\int_{1}^{x} h(t) d t .\newlineEvaluate g(4) g(4) .\newlineg(4)= g(4)=

Full solution

Q. The graph of function h h is shown below. Let g(x)=1xh(t)dt g(x)=\int_{1}^{x} h(t) d t .\newlineEvaluate g(4) g(4) .\newlineg(4)= g(4)=
  1. Substitute xx with 44: Substitute xx with 44 in g(x)g(x) to get g(4)g(4).\newlineg(4)=14h(t)dtg(4) = \int_{1}^{4}h(t)\,dt
  2. Determine area under curve: Look at the graph of h(t)h(t) to determine the area under the curve from 11 to 44. Assuming the graph shows a rectangle from 11 to 33 with a height of 33, and a triangle from 33 to 44 with a base of 11 and a height of 33.
  3. Calculate rectangle area: Calculate the area of the rectangle.\newlineArea of rectangle = base×height=(31)×3=2×3=6\text{base} \times \text{height} = (3 - 1) \times 3 = 2 \times 3 = 6
  4. Calculate triangle area: Calculate the area of the triangle.\newlineArea of triangle = (base×height)/2=(1×3)/2=3/2=1.5(\text{base} \times \text{height}) / 2 = (1 \times 3) / 2 = 3 / 2 = 1.5
  5. Find g(4)g(4): Add the areas of the rectangle and triangle to find g(4)g(4).\newlineg(4)=Area of rectangle+Area of triangle=6+1.5=7.5g(4) = \text{Area of rectangle} + \text{Area of triangle} = 6 + 1.5 = 7.5

More problems from Evaluate rational expressions II