Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of function 
h is shown below. Let 
f(x)=int_(-4)^(x)h(t)dt.
Evaluate 
f(-1).

f(-1)=

The graph of function h h is shown below. Let f(x)=4xh(t)dt f(x)=\int_{-4}^{x} h(t) d t .\newlineEvaluate f(1) f(-1) .\newlinef(1)= f(-1)=

Full solution

Q. The graph of function h h is shown below. Let f(x)=4xh(t)dt f(x)=\int_{-4}^{x} h(t) d t .\newlineEvaluate f(1) f(-1) .\newlinef(1)= f(-1)=
  1. Identify Area Range: Identify the area under the graph of h(t)h(t) from 4-4 to 1-1.
  2. Calculate Geometric Shapes: Calculate the area of each geometric shape under the graph from 4-4 to 1-1.
  3. Sum Areas for Total: Sum the areas to find the total area, which is the value of f(1)f(-1).
  4. Find f(1)f(-1) Value: f(1)=(Area of shapes under the graph from4to1)f(-1) = (\text{Area of shapes under the graph from} -4 \text{to} -1).

More problems from Evaluate rational expressions II