Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The graph of function 
h is shown below. Let 
f(x)=int_(3)^(x)h(t)dt.
Evaluate 
f(4).

f(4)=

The graph of function h h is shown below. Let f(x)=3xh(t)dt f(x)=\int_{3}^{x} h(t) d t .\newlineEvaluate f(4) f(4) .\newlinef(4)= f(4)=

Full solution

Q. The graph of function h h is shown below. Let f(x)=3xh(t)dt f(x)=\int_{3}^{x} h(t) d t .\newlineEvaluate f(4) f(4) .\newlinef(4)= f(4)=
  1. Substitute xx with 44: Substitute xx with 44 in the function f(x)f(x).f(4)=34h(t)dtf(4) = \int_{3}^{4} h(t) \, dt
  2. Determine area under curve: Look at the graph of h(t)h(t) to determine the area under the curve from 33 to 44. Assuming the graph shows a rectangle or a trapezoid from 33 to 44, calculate the area.

More problems from Evaluate rational expressions II