Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The geometric sequence 
a_(i) is defined by the formula:

{:[a_(1)=8],[a_(i)=a_(i-1)*(-1.5)]:}
Find the sum of the first 20 terms in the sequence.
Choose 1 answer:
(A) 
-2.47*10^(17)
(B) 
-53,220.11
(C) 
-17,734.70
(D) 
-10,637.62

The geometric sequence ai a_{i} is defined by the formula:\newlinea1=8ai=ai1(1.5) \begin{array}{l} a_{1}=8 \\ a_{i}=a_{i-1} \cdot(-1.5) \end{array} \newlineFind the sum of the first 2020 terms in the sequence.\newlineChoose 11 answer:\newline(A) 2.471017 -2.47 \cdot 10^{17} \newline(B) 53,220.11 -53,220.11 \newline(C) 17,734.70 -17,734.70 \newline(D) 10,637.62 -10,637.62

Full solution

Q. The geometric sequence ai a_{i} is defined by the formula:\newlinea1=8ai=ai1(1.5) \begin{array}{l} a_{1}=8 \\ a_{i}=a_{i-1} \cdot(-1.5) \end{array} \newlineFind the sum of the first 2020 terms in the sequence.\newlineChoose 11 answer:\newline(A) 2.471017 -2.47 \cdot 10^{17} \newline(B) 53,220.11 -53,220.11 \newline(C) 17,734.70 -17,734.70 \newline(D) 10,637.62 -10,637.62
  1. Identify type of sequence: Identify the type of sequence.\newlineThe sequence is geometric because each term is found by multiplying the previous term by a constant ratio.
  2. Determine common ratio: Determine the common ratio rr of the sequence.\newlineThe common ratio is given by the formula ai=ai1×(1.5)a_{i} = a_{i-1} \times (-1.5), so r=1.5r = -1.5.
  3. Use sum formula for sequence: Use the formula for the sum of the first nn terms of a geometric sequence.\newlineThe sum of the first nn terms (SnS_n) of a geometric sequence is given by Sn=a1(1rn)/(1r)S_n = a_1 \cdot (1 - r^n) / (1 - r), where a1a_1 is the first term, rr is the common ratio, and nn is the number of terms.
  4. Calculate sum of 2020 terms: Calculate the sum of the first 2020 terms.\newlineWe have a1=8a_1 = 8, r=1.5r = -1.5, and n=20n = 20. Plugging these values into the formula gives us:\newlineS20=8×(1(1.5)20)/(1(1.5))S_{20} = 8 \times (1 - (-1.5)^{20}) / (1 - (-1.5))
  5. Perform necessary calculations: Perform the calculations.\newlineFirst, calculate (1.5)20(-1.5)^{20}:\newline(1.5)20=3.35×1014(-1.5)^{20} = 3.35 \times 10^{14} (approximately)\newlineNext, calculate the numerator of the sum formula:\newline1(1.5)20=13.35×10141 - (-1.5)^{20} = 1 - 3.35 \times 10^{14}\newlineThis results in a negative number, which is expected since the common ratio is negative and greater than 11 in absolute value.\newlineNow, calculate the denominator of the sum formula:\newline1(1.5)=1+1.5=2.51 - (-1.5) = 1 + 1.5 = 2.5\newlineFinally, calculate the sum:\newlineS20=8×(13.35×1014)/2.5S_{20} = 8 \times (1 - 3.35 \times 10^{14}) / 2.5
  6. Complete final calculation: Complete the calculation and find the sum.\newlineS20=8×(3.35×1014)/2.5S_{20} = 8 \times (-3.35 \times 10^{14}) / 2.5\newlineS20=26.8×1014/2.5S_{20} = -26.8 \times 10^{14} / 2.5\newlineS20=10.72×1014S_{20} = -10.72 \times 10^{14}\newlineS20=1.072×1016S_{20} = -1.072 \times 10^{16}

More problems from Identify a sequence as explicit or recursive