Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The function f f is defined asf(x)=72x24x f(x)=\frac{7}{2x^{2}-4x} .\newlineFind f(x+6) f(x+6) .\newlineWrite your answer without parentheses, and simplify it as much as possible.\newlinef(x+6)= f(x+6)= \square

Full solution

Q. The function f f is defined asf(x)=72x24x f(x)=\frac{7}{2x^{2}-4x} .\newlineFind f(x+6) f(x+6) .\newlineWrite your answer without parentheses, and simplify it as much as possible.\newlinef(x+6)= f(x+6)= \square
  1. Substitute xx with (x+6)(x+6): Substitute xx with (x+6)(x+6) in the function f(x)f(x). We need to replace every instance of xx in the function with (x+6)(x+6). f(x+6)=72(x+6)24(x+6)f(x+6) = \frac{7}{2(x+6)^2 - 4(x+6)}
  2. Expand and distribute in denominator: Expand the squares and the multiplication in the denominator.\newlineWe will expand (x+6)2(x+6)^2 and distribute the 4-4 across (x+6)(x+6).\newlinef(x+6)=72(x2+12x+36)4x24f(x+6) = \frac{7}{2(x^2 + 12x + 36) - 4x - 24}
  3. Distribute and combine like terms: Distribute the 22 in the denominator and combine like terms.\newlineMultiply each term inside the parentheses by 22 and then subtract 4x4x and 2424.\newlinef(x+6)=72x2+24x+724x24f(x+6) = \frac{7}{2x^2 + 24x + 72 - 4x - 24}
  4. Combine like terms: Combine like terms in the denominator.\newlineAdd or subtract the coefficients of like terms in the denominator.\newlinef(x+6)=72x2+20x+48f(x+6) = \frac{7}{2x^2 + 20x + 48}
  5. Check for simplification: Check for any further simplification.\newlineThe expression (7)/(2x2+20x+48)(7)/(2x^2 + 20x + 48) is already in its simplest form. There are no common factors to reduce the fraction further.

More problems from Transformations of quadratic functions