Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
sqrt5*sqrt(5^(3)) is equivalent to

5^((1)/(2))

5^((3)/(4))

5^((4)/(3))

5^(2)

The expression 553 \sqrt{5} \cdot \sqrt{5^{3}} is equivalent to\newline512 5^{\frac{1}{2}} \newline534 5^{\frac{3}{4}} \newline543 5^{\frac{4}{3}} \newline52 5^{2}

Full solution

Q. The expression 553 \sqrt{5} \cdot \sqrt{5^{3}} is equivalent to\newline512 5^{\frac{1}{2}} \newline534 5^{\frac{3}{4}} \newline543 5^{\frac{4}{3}} \newline52 5^{2}
  1. Understand the Problem: Understand the problem. We need to simplify the expression 5×53\sqrt{5} \times \sqrt{5^3}.
  2. Rewrite in Exponent Form: Rewrite the square roots in exponent form. 5\sqrt{5} can be written as 51/25^{1/2} and 53\sqrt{5^3} can be written as (53)1/2(5^3)^{1/2}.
  3. Apply Exponent Rule: Apply the exponent rule (an)m=anm(a^n)^m = a^{n*m} to the second term.\newline(53)1/2=53(1/2)=53/2(5^3)^{1/2} = 5^{3*(1/2)} = 5^{3/2}.
  4. Multiply Expressions: Multiply the two expressions. 512×5325^{\frac{1}{2}} \times 5^{\frac{3}{2}}.
  5. Apply Exponent Rule: Apply the exponent rule am×an=am+na^m \times a^n = a^{m+n} when multiplying two exponents with the same base.\newline512+32=5425^{\frac{1}{2} + \frac{3}{2}} = 5^{\frac{4}{2}}.
  6. Simplify Exponent: Simplify the exponent. 542=525^{\frac{4}{2}} = 5^2.

More problems from Multiplication with rational exponents