Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
sqrt(7^(3))*root(6)(7^(5)) is equivalent to

7^((4)/(5))

7^((5)/(4))

7^((7)/(3))

7^((3)/(7))

The expression 73756 \sqrt{7^{3}} \cdot \sqrt[6]{7^{5}} is equivalent to\newline745 7^{\frac{4}{5}} \newline754 7^{\frac{5}{4}} \newline773 7^{\frac{7}{3}} \newline737 7^{\frac{3}{7}}

Full solution

Q. The expression 73756 \sqrt{7^{3}} \cdot \sqrt[6]{7^{5}} is equivalent to\newline745 7^{\frac{4}{5}} \newline754 7^{\frac{5}{4}} \newline773 7^{\frac{7}{3}} \newline737 7^{\frac{3}{7}}
  1. Express in Exponents: We are given the expression 73756\sqrt{7^{3}}\cdot\sqrt[6]{7^{5}}. The first step is to express the square root and the sixth root in terms of exponents.\newlineThe square root of a number is the same as raising that number to the power of 12\frac{1}{2}, and the sixth root is the same as raising that number to the power of 16\frac{1}{6}.\newlineSo, we can rewrite the expression as:\newline7327567^{\frac{3}{2}} \cdot 7^{\frac{5}{6}}
  2. Apply Exponent Rule: Next, we apply the rule of exponents that states when we multiply two exponents with the same base, we add the exponents.\newlineSo, we add the exponents 32\frac{3}{2} and 56\frac{5}{6}.\newlineTo add these fractions, we need a common denominator, which is 66 in this case.\newlineSo, we convert 32\frac{3}{2} to 96\frac{9}{6} and then add it to 56\frac{5}{6}.\newline96+56=146\frac{9}{6} + \frac{5}{6} = \frac{14}{6}
  3. Simplify Fraction: Now, we simplify the fraction 146\frac{14}{6} by dividing both the numerator and the denominator by their greatest common divisor, which is 22. \newline14÷2=714 \div 2 = 7\newline6÷2=36 \div 2 = 3\newlineSo, 146\frac{14}{6} simplifies to 73\frac{7}{3}.
  4. Write Final Expression: Finally, we write the simplified exponent back with the base 77. The expression becomes 77/37^{7/3}.

More problems from Multiplication with rational exponents