Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
sqrt(3^(5))*sqrt(3^(5)) is equivalent to

3^((1)/(5))

3^((25)/(4))

3^((4)/(25))

3^(5)

The expression 3535 \sqrt{3^{5}} \cdot \sqrt{3^{5}} is equivalent to\newline315 3^{\frac{1}{5}} \newline3254 3^{\frac{25}{4}} \newline3425 3^{\frac{4}{25}} \newline35 3^{5}

Full solution

Q. The expression 3535 \sqrt{3^{5}} \cdot \sqrt{3^{5}} is equivalent to\newline315 3^{\frac{1}{5}} \newline3254 3^{\frac{25}{4}} \newline3425 3^{\frac{4}{25}} \newline35 3^{5}
  1. Understand the problem: Understand the problem.\newlineWe need to simplify the expression 35\sqrt{3^{5}}35\sqrt{3^{5}}.
  2. Apply property of square roots: Apply the property of square roots. The square root of a number raised to a power is the same as that number raised to half the power. So, 35\sqrt{3^{5}} is the same as 3523^{\frac{5}{2}}.
  3. Multiply the expressions: Multiply the expressions.\newlineNow we multiply 3523^{\frac{5}{2}} by 3523^{\frac{5}{2}}. When multiplying expressions with the same base, we add the exponents.\newline352×352=3(52+52)3^{\frac{5}{2}} \times 3^{\frac{5}{2}} = 3^{(\frac{5}{2} + \frac{5}{2})}
  4. Add the exponents: Add the exponents.\newline(52)+(52)=102(\frac{5}{2}) + (\frac{5}{2}) = \frac{10}{2}
  5. Simplify the exponent: Simplify the exponent.\newline102=5\frac{10}{2} = 5\newlineSo, 352×352=353^{\frac{5}{2}} \times 3^{\frac{5}{2}} = 3^5
  6. Write final answer: Write the final answer.\newlineThe expression 35\sqrt{3^{5}}35\sqrt{3^{5}} is equivalent to 353^{5}.

More problems from Multiplication with rational exponents