Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(6)(7)*root(3)(7^(5)) is equivalent to

7^((6)/(11))

7^((11)/(6))

7^((18)/(5))

7^((5)/(18))

The expression 76753 \sqrt[6]{7} \cdot \sqrt[3]{7^{5}} is equivalent to\newline7611 7^{\frac{6}{11}} \newline7116 7^{\frac{11}{6}} \newline7185 7^{\frac{18}{5}} \newline7518 7^{\frac{5}{18}}

Full solution

Q. The expression 76753 \sqrt[6]{7} \cdot \sqrt[3]{7^{5}} is equivalent to\newline7611 7^{\frac{6}{11}} \newline7116 7^{\frac{11}{6}} \newline7185 7^{\frac{18}{5}} \newline7518 7^{\frac{5}{18}}
  1. Express Roots as Exponents: We are given the expression 76753\sqrt[6]{7}\cdot\sqrt[3]{7^{5}}. We need to express both roots in terms of exponents.\newlineThe sixth root of 77 can be written as 7167^{\frac{1}{6}}, and the cube root of 757^5 can be written as (75)13(7^5)^{\frac{1}{3}}.
  2. Apply Exponent Rule: Now we apply the exponent rule (am)n=amn(a^m)^n = a^{m*n} to the second term (75)1/3(7^5)^{1/3}. This simplifies to 75(1/3)=75/37^{5*(1/3)} = 7^{5/3}.
  3. Multiply Expressions: Next, we multiply the two expressions together: 716×7537^{\frac{1}{6}} \times 7^{\frac{5}{3}}. Since the bases are the same, we can add the exponents: 716+537^{\frac{1}{6} + \frac{5}{3}}.
  4. Add Exponents: To add the exponents, we need a common denominator. The least common multiple of 66 and 33 is 66, so we convert 53\frac{5}{3} to an equivalent fraction with a denominator of 66: 53=(5×2)(3×2)=106\frac{5}{3} = \frac{(5\times2)}{(3\times2)} = \frac{10}{6}.
  5. Convert to Simplified Form: Now we can add the exponents: 716+106=71167^{\frac{1}{6} + \frac{10}{6}} = 7^{\frac{11}{6}}.\newlineThis is the simplified form of the original expression.

More problems from Multiplication with rational exponents