Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(6)(5)*root(5)(5) is equivalent to

25^((11)/(30))

25^((1)/(30))

5^((1)/(30))

5^((11)/(30))

The expression 5655 \sqrt[6]{5} \cdot \sqrt[5]{5} is equivalent to\newline251130 25^{\frac{11}{30}} \newline25130 25^{\frac{1}{30}} \newline5130 5^{\frac{1}{30}} \newline51130 5^{\frac{11}{30}}

Full solution

Q. The expression 5655 \sqrt[6]{5} \cdot \sqrt[5]{5} is equivalent to\newline251130 25^{\frac{11}{30}} \newline25130 25^{\frac{1}{30}} \newline5130 5^{\frac{1}{30}} \newline51130 5^{\frac{11}{30}}
  1. Understand the expression: Understand the given expression.\newlineWe have the expression 5655\sqrt[6]{5}\cdot\sqrt[5]{5}, which means the 66th root of 55 multiplied by the 55th root of 55.
  2. Convert to fractional exponents: Convert the roots to fractional exponents.\newlineThe 6th6^{\text{th}} root of 55 can be written as 5(1/6)5^{(1/6)}, and the 5th5^{\text{th}} root of 55 can be written as 5(1/5)5^{(1/5)}.\newlineSo, 5655\sqrt[6]{5}\cdot\sqrt[5]{5} becomes 5(1/6)5(1/5)5^{(1/6)} \cdot 5^{(1/5)}.
  3. Apply multiplication rule: Apply the rule for multiplying powers with the same base.\newlineWhen multiplying powers with the same base, we add the exponents.\newlineSo, 51/6×51/5=51/6+1/55^{1/6} \times 5^{1/5} = 5^{1/6 + 1/5}.
  4. Find common denominator: Find a common denominator and add the exponents.\newlineThe common denominator for 66 and 55 is 3030.\newlineSo, 16+15=530+630=1130\frac{1}{6} + \frac{1}{5} = \frac{5}{30} + \frac{6}{30} = \frac{11}{30}.\newlineTherefore, 516+15=511305^{\frac{1}{6} + \frac{1}{5}} = 5^{\frac{11}{30}}.
  5. Write final answer: Write the final answer.\newlineThe equivalent expression for 5655\sqrt[6]{5}\cdot\sqrt[5]{5} is 511305^{\frac{11}{30}}.

More problems from Multiplication with rational exponents