Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(6)(3^(5))*root(5)(3^(4)) is equivalent to

9^((2)/(3))

9^((49)/(30))

3^((49)/(30))

3^((2)/(3))

The expression 356345 \sqrt[6]{3^{5}} \cdot \sqrt[5]{3^{4}} is equivalent to\newline923 9^{\frac{2}{3}} \newline94930 9^{\frac{49}{30}} \newline34930 3^{\frac{49}{30}} \newline323 3^{\frac{2}{3}}

Full solution

Q. The expression 356345 \sqrt[6]{3^{5}} \cdot \sqrt[5]{3^{4}} is equivalent to\newline923 9^{\frac{2}{3}} \newline94930 9^{\frac{49}{30}} \newline34930 3^{\frac{49}{30}} \newline323 3^{\frac{2}{3}}
  1. Rewrite using radical notation: Understand the given expression and rewrite it using radical notation.\newlineThe given expression is 356\sqrt[6]{3^{5}}\cdot345\sqrt[5]{3^{4}}. This can be rewritten using exponents as:\newline(35)16(34)15(3^{5})^{\frac{1}{6}} \cdot (3^{4})^{\frac{1}{5}}
  2. Apply power of a power rule: Apply the power of a power rule.\newlineAccording to the power of a power rule, (am)n=amn(a^m)^n = a^{m*n}. We apply this rule to both terms:\newline(351/6)(341/5)(3^{5*1/6}) * (3^{4*1/5})
  3. Perform exponent multiplication: Perform the multiplication of the exponents.\newlineNow we multiply the exponents for each term:\newline356×3453^{\frac{5}{6}} \times 3^{\frac{4}{5}}
  4. Add exponents with same base: Add the exponents since the bases are the same.\newlineWhen multiplying with the same base, we add the exponents:\newline3(56+45)3^{(\frac{5}{6} + \frac{4}{5})}
  5. Find common denominator: Find a common denominator to add the fractions.\newlineThe common denominator for 66 and 55 is 3030. We convert each fraction to have a denominator of 3030:\newline3(2530+2430)3^{\left(\frac{25}{30} + \frac{24}{30}\right)}
  6. Add fractions: Add the fractions.\newlineNow we add the numerators of the fractions:\newline3(25+2430)3^{\left(\frac{25 + 24}{30}\right)}\newline3(4930)3^{\left(\frac{49}{30}\right)}
  7. Check for further simplification: Check if the expression can be simplified further.\newlineThe expression 3(4930)3^{(\frac{49}{30})} is already in its simplest form, so no further simplification is needed.

More problems from Multiplication with rational exponents