Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(6)(10^(5))*root(5)(10^(3)) is equivalent to

10^((43)/(30))

10^((1)/(2))

100^((43)/(30))

100^((1)/(2))

The expression 10561035 \sqrt[6]{10^{5}} \cdot \sqrt[5]{10^{3}} is equivalent to\newline104330 10^{\frac{43}{30}} \newline1012 10^{\frac{1}{2}} \newline1004330 100^{\frac{43}{30}} \newline10012 100^{\frac{1}{2}}

Full solution

Q. The expression 10561035 \sqrt[6]{10^{5}} \cdot \sqrt[5]{10^{3}} is equivalent to\newline104330 10^{\frac{43}{30}} \newline1012 10^{\frac{1}{2}} \newline1004330 100^{\frac{43}{30}} \newline10012 100^{\frac{1}{2}}
  1. Understand the expression: Understand the given expression.\newlineWe have the expression 1056×1035\sqrt[6]{10^{5}} \times \sqrt[5]{10^{3}}. This means we are multiplying two radical expressions, where the first is the sixth root of 1010 raised to the fifth power, and the second is the fifth root of 1010 raised to the third power.
  2. Convert to fractional exponents: Convert the radical expressions to fractional exponents.\newlineThe sixth root of 10510^5 can be written as (105)16(10^5)^{\frac{1}{6}}, and the fifth root of 10310^3 can be written as (103)15(10^3)^{\frac{1}{5}}.
  3. Apply power of a power rule: Apply the power of a power rule.\newlineUsing the power of a power rule, we can simplify the expressions further:\newline(105)1/6=105/6(10^5)^{1/6} = 10^{5/6}\newline(103)1/5=103/5(10^3)^{1/5} = 10^{3/5}
  4. Multiply expressions: Multiply the two expressions.\newlineNow we multiply the two expressions with the same base 1010:\newline1056×103510^{\frac{5}{6}} \times 10^{\frac{3}{5}}
  5. Apply product of powers rule: Apply the product of powers rule.\newlineWhen multiplying expressions with the same base, we add the exponents:\newline1056+3510^{\frac{5}{6} + \frac{3}{5}}
  6. Find common denominator: Find a common denominator and add the exponents.\newlineThe common denominator for 66 and 55 is 3030. We convert the fractions to have the same denominator:\newline(56)(55)=2530(\frac{5}{6}) \cdot (\frac{5}{5}) = \frac{25}{30}\newline(35)(66)=1830(\frac{3}{5}) \cdot (\frac{6}{6}) = \frac{18}{30}\newlineNow we add the fractions:\newline2530+1830=4330\frac{25}{30} + \frac{18}{30} = \frac{43}{30}
  7. Write final expression: Write the final expression.\newlineThe final expression after adding the exponents is:\newline10433010^{\frac{43}{30}}

More problems from Multiplication with rational exponents