Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(5)(7^(4))*root(6)(7^(5)) is equivalent to

7^((3)/(2))

7^((49)/(30))

7^((30)/(49))

7^((2)/(3))

The expression 745756 \sqrt[5]{7^{4}} \cdot \sqrt[6]{7^{5}} is equivalent to\newline732 7^{\frac{3}{2}} \newline74930 7^{\frac{49}{30}} \newline73049 7^{\frac{30}{49}} \newline723 7^{\frac{2}{3}}

Full solution

Q. The expression 745756 \sqrt[5]{7^{4}} \cdot \sqrt[6]{7^{5}} is equivalent to\newline732 7^{\frac{3}{2}} \newline74930 7^{\frac{49}{30}} \newline73049 7^{\frac{30}{49}} \newline723 7^{\frac{2}{3}}
  1. Understand the problem: Understand the problem. We need to simplify the expression involving roots of powers of 77.
  2. Convert to fractional exponents: Convert roots to fractional exponents. 745\sqrt[5]{7^{4}} can be written as 7457^{\frac{4}{5}} and 756\sqrt[6]{7^{5}} can be written as 7567^{\frac{5}{6}}.
  3. Multiply expressions: Multiply the expressions with fractional exponents.\newline745×756=745+567^{\frac{4}{5}} \times 7^{\frac{5}{6}} = 7^{\frac{4}{5} + \frac{5}{6}}
  4. Find common denominator: Find a common denominator for the exponents.\newlineThe common denominator for 55 and 66 is 3030. So we convert the fractions to have the same denominator:\newline45=(4×65×6)=2430\frac{4}{5} = \left(\frac{4\times6}{5\times6}\right) = \frac{24}{30}\newline56=(5×56×5)=2530\frac{5}{6} = \left(\frac{5\times5}{6\times5}\right) = \frac{25}{30}
  5. Add exponents: Add the exponents.\newline72430+2530=749307^{\frac{24}{30} + \frac{25}{30}} = 7^{\frac{49}{30}}
  6. Write final answer: Write the final answer.\newlineThe expression 745\sqrt[5]{7^{4}}756\sqrt[6]{7^{5}} is equivalent to 749307^{\frac{49}{30}}.

More problems from Multiplication with rational exponents