Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(5)(3^(3))*root(5)(3^(3)) is equivalent to

9^((6)/(5))

9^((9)/(25))

3^((9)/(25))

3^((6)/(5))

The expression 335335 \sqrt[5]{3^{3}} \cdot \sqrt[5]{3^{3}} is equivalent to\newline965 9^{\frac{6}{5}} \newline9925 9^{\frac{9}{25}} \newline3925 3^{\frac{9}{25}} \newline365 3^{\frac{6}{5}}

Full solution

Q. The expression 335335 \sqrt[5]{3^{3}} \cdot \sqrt[5]{3^{3}} is equivalent to\newline965 9^{\frac{6}{5}} \newline9925 9^{\frac{9}{25}} \newline3925 3^{\frac{9}{25}} \newline365 3^{\frac{6}{5}}
  1. Understand Expression: Understand the given expression.\newlineWe have the expression 335×335\sqrt[5]{3^{3}} \times \sqrt[5]{3^{3}}. This means we are multiplying two fifth roots of 33 raised to the power of 33.
  2. Use Exponent Property: Use the property of exponents for roots.\newlineThe fifth root of a number is the same as raising that number to the power of 15\frac{1}{5}. So, we can rewrite the expression as:\newline(33)15×(33)15(3^{3})^{\frac{1}{5}} \times (3^{3})^{\frac{1}{5}}
  3. Apply Power Rule: Apply the power of a power rule.\newlineWhen we raise a power to another power, we multiply the exponents. So, we get:\newline33×(1/5)×33×(1/5)=33/5×33/53^{3\times(1/5)} \times 3^{3\times(1/5)} = 3^{3/5} \times 3^{3/5}
  4. Use Exponent Property: Use the property of exponents for multiplication.\newlineWhen we multiply like bases, we add the exponents. So, we get:\newline3(35+35)=3653^{(\frac{3}{5} + \frac{3}{5})} = 3^{\frac{6}{5}}
  5. Check for Simplification: Check if the expression can be simplified further.\newlineThe expression 3653^{\frac{6}{5}} is already in its simplest form, so we cannot simplify it further.

More problems from Multiplication with rational exponents