Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(5)(10^(2))*root(5)(10^(2)) is equivalent to

10^((4)/(25))

10^((25)/(4))

10^((5)/(4))

10^((4)/(5))

The expression 10251025 \sqrt[5]{10^{2}} \cdot \sqrt[5]{10^{2}} is equivalent to\newline10425 10^{\frac{4}{25}} \newline10254 10^{\frac{25}{4}} \newline1054 10^{\frac{5}{4}} \newline1045 10^{\frac{4}{5}}

Full solution

Q. The expression 10251025 \sqrt[5]{10^{2}} \cdot \sqrt[5]{10^{2}} is equivalent to\newline10425 10^{\frac{4}{25}} \newline10254 10^{\frac{25}{4}} \newline1054 10^{\frac{5}{4}} \newline1045 10^{\frac{4}{5}}
  1. Understand the Problem: Understand the problem. We need to simplify the expression involving the fifth root of 1010 squared, multiplied by itself.
  2. Use Exponent Property: Use the property of exponents for roots.\newlineThe fifth root of 10210^2 squared can be written as 10(2/5)10^{(2/5)}.\newlineSo, 1025×1025\sqrt[5]{10^2} \times \sqrt[5]{10^2} becomes 10(2/5)×10(2/5)10^{(2/5)} \times 10^{(2/5)}.
  3. Apply Multiplication Rule: Apply the rule for multiplying powers with the same base.\newlineWhen multiplying powers with the same base, we add the exponents.\newlineSo, 1025×1025=10(25+25).10^{\frac{2}{5}} \times 10^{\frac{2}{5}} = 10^{(\frac{2}{5} + \frac{2}{5})}.
  4. Perform Exponent Addition: Perform the addition of the exponents.\newline(25)+(25)=45(\frac{2}{5}) + (\frac{2}{5}) = \frac{4}{5}.\newlineSo, 10(25)×10(25)=10(45)10^{(\frac{2}{5})} \times 10^{(\frac{2}{5})} = 10^{(\frac{4}{5})}.

More problems from Multiplication with rational exponents