Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(4)(7)*root(4)(7) is equivalent to

49^((1)/(16))

49^((1)/(2))

7^((1)/(16))

7^((1)/(2))

The expression 7474 \sqrt[4]{7} \cdot \sqrt[4]{7} is equivalent to\newline49116 49^{\frac{1}{16}} \newline4912 49^{\frac{1}{2}} \newline7116 7^{\frac{1}{16}} \newline712 7^{\frac{1}{2}}

Full solution

Q. The expression 7474 \sqrt[4]{7} \cdot \sqrt[4]{7} is equivalent to\newline49116 49^{\frac{1}{16}} \newline4912 49^{\frac{1}{2}} \newline7116 7^{\frac{1}{16}} \newline712 7^{\frac{1}{2}}
  1. Understand the problem: Understand the problem. We need to find the equivalent expression for the product of two fourth roots of 77.
  2. Use property of exponents: Use the property of exponents for roots.\newlineThe fourth root of a number can be written as that number raised to the 1/41/4 power. So, 74\sqrt[4]{7} can be written as 71/47^{1/4}.
  3. Multiply the expressions: Multiply the expressions.\newlineWe have 71/4×71/47^{1/4} \times 7^{1/4}. When multiplying expressions with the same base, we add the exponents.
  4. Add the exponents: Add the exponents. 714×714=714+14=7247^{\frac{1}{4}} \times 7^{\frac{1}{4}} = 7^{\frac{1}{4} + \frac{1}{4}} = 7^{\frac{2}{4}}
  5. Simplify the exponent: Simplify the exponent. 7247^{\frac{2}{4}} simplifies to 7127^{\frac{1}{2}}, because 24\frac{2}{4} reduces to 12\frac{1}{2}.
  6. Write the final answer: Write the final answer.\newlineThe equivalent expression for 74×74\sqrt[4]{7}\times\sqrt[4]{7} is 71/27^{1/2}.

More problems from Multiplication with rational exponents