Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(4)(7^(3))*root(3)(7) is equivalent to

7^((13)/(12))

7^((1)/(4))

49^((13)/(12))

49^((1)/(4))

The expression 73473 \sqrt[4]{7^{3}} \cdot \sqrt[3]{7} is equivalent to\newline71312 7^{\frac{13}{12}} \newline714 7^{\frac{1}{4}} \newline491312 49^{\frac{13}{12}} \newline4914 49^{\frac{1}{4}}

Full solution

Q. The expression 73473 \sqrt[4]{7^{3}} \cdot \sqrt[3]{7} is equivalent to\newline71312 7^{\frac{13}{12}} \newline714 7^{\frac{1}{4}} \newline491312 49^{\frac{13}{12}} \newline4914 49^{\frac{1}{4}}
  1. Rewrite using Exponent Notation: We are given the expression 73473\sqrt[4]{7^{3}}\cdot\sqrt[3]{7} and we need to simplify it. The fourth root of 737^3 can be written as 7347^{\frac{3}{4}}, and the cube root of 77 can be written as 7137^{\frac{1}{3}}. So, we rewrite the expression using exponent notation.
  2. Add Exponents with Same Base: Now we have 734×7137^{\frac{3}{4}} \times 7^{\frac{1}{3}}. To multiply two exponents with the same base, we add the exponents. So, we add 34\frac{3}{4} and 13\frac{1}{3}.
  3. Find Common Denominator: To add the fractions 34\frac{3}{4} and 13\frac{1}{3}, we need a common denominator. The least common denominator for 44 and 33 is 1212. We convert each fraction to have a denominator of 1212: (34)(1212)=912\left(\frac{3}{4}\right)\left(\frac{12}{12}\right) = \frac{9}{12} and (13)(1212)=412\left(\frac{1}{3}\right)\left(\frac{12}{12}\right) = \frac{4}{12}.
  4. Combine Exponents: Now we add the two fractions: 912+412=1312\frac{9}{12} + \frac{4}{12} = \frac{13}{12}. So, the combined exponent for 77 is 1312\frac{13}{12}. We write the simplified expression as 713127^{\frac{13}{12}}.
  5. Check Answer Choices: We check the answer choices to see which one matches our simplified expression. The correct answer is 7(13/12)7^{(13/12)}.

More problems from Multiplication with rational exponents