Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(4)(5^(3))*root(5)(5^(4)) is equivalent to

25^((3)/(5))

5^((3)/(5))

5^((31)/(20))

25^((31)/(20))

The expression 534545 \sqrt[4]{5^{3}} \cdot \sqrt[5]{5^{4}} is equivalent to\newline2535 25^{\frac{3}{5}} \newline535 5^{\frac{3}{5}} \newline53120 5^{\frac{31}{20}} \newline253120 25^{\frac{31}{20}}

Full solution

Q. The expression 534545 \sqrt[4]{5^{3}} \cdot \sqrt[5]{5^{4}} is equivalent to\newline2535 25^{\frac{3}{5}} \newline535 5^{\frac{3}{5}} \newline53120 5^{\frac{31}{20}} \newline253120 25^{\frac{31}{20}}
  1. Understand the expression: Understand the given expression.\newlineWe have the expression 534\sqrt[4]{5^{3}}\cdot545\sqrt[5]{5^{4}}, which means we are dealing with the fourth root of 55 raised to the power of 33, multiplied by the fifth root of 55 raised to the power of 44.
  2. Convert to fractional exponents: Convert the roots to fractional exponents.\newlineThe fourth root of 535^3 can be written as (53)14(5^3)^{\frac{1}{4}}, and the fifth root of 545^4 can be written as (54)15(5^4)^{\frac{1}{5}}.
  3. Apply power of a power rule: Apply the power of a power rule.\newlineUsing the power of a power rule (am)n=amn(a^{m})^{n} = a^{m*n}, we can simplify the expression:\newline(53)1/4(54)1/5=53/454/5(5^{3})^{1/4} * (5^{4})^{1/5} = 5^{3/4} * 5^{4/5}.
  4. Add exponents with same base: Add the exponents since the bases are the same.\newlineWhen multiplying with the same base, we add the exponents:\newline534+455^{\frac{3}{4} + \frac{4}{5}}.
  5. Find common denominator: Find a common denominator to add the fractions.\newlineThe common denominator for 44 and 55 is 2020, so we convert the fractions:\newline34=1520\frac{3}{4} = \frac{15}{20} and 45=1620\frac{4}{5} = \frac{16}{20}.
  6. Add converted fractions: Add the converted fractions.\newlineNow we add the fractions with the common denominator:\newline1520+1620=3120\frac{15}{20} + \frac{16}{20} = \frac{31}{20}.
  7. Write final expression: Write the final expression.\newlineThe final expression is 531205^{\frac{31}{20}}.

More problems from Multiplication with rational exponents