Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(4)(5^(3))*root(4)(5^(5)) is equivalent to

5^(2)

5^((15)/(16))

25^((15)/(16))

25^(2)

The expression 534554 \sqrt[4]{5^{3}} \cdot \sqrt[4]{5^{5}} is equivalent to\newline52 5^{2} \newline51516 5^{\frac{15}{16}} \newline251516 25^{\frac{15}{16}} \newline252 25^{2}

Full solution

Q. The expression 534554 \sqrt[4]{5^{3}} \cdot \sqrt[4]{5^{5}} is equivalent to\newline52 5^{2} \newline51516 5^{\frac{15}{16}} \newline251516 25^{\frac{15}{16}} \newline252 25^{2}
  1. Understand the problem: Understand the problem. We need to simplify the expression which involves fourth roots of powers of 55.
  2. Apply exponent property: Apply the property of exponents for roots.\newlineThe fourth root of a number is the same as raising that number to the 14\frac{1}{4} power.\newline534×554=534×554\sqrt[4]{5^{3}} \times \sqrt[4]{5^{5}} = 5^{\frac{3}{4}} \times 5^{\frac{5}{4}}
  3. Add exponents: Add the exponents since the bases are the same.\newlineWhen multiplying with the same base, add the exponents.\newline534×554=5(34+54)5^{\frac{3}{4}} \times 5^{\frac{5}{4}} = 5^{\left(\frac{3}{4} + \frac{5}{4}\right)}
  4. Perform addition: Perform the addition of the exponents.\newline(34)+(54)=(3+54)=84(\frac{3}{4}) + (\frac{5}{4}) = (\frac{3+5}{4}) = \frac{8}{4}
  5. Simplify exponent: Simplify the exponent.\newline84\frac{8}{4} simplifies to 22.\newline5(34+54)=584=525^{(\frac{3}{4} + \frac{5}{4})} = 5^{\frac{8}{4}} = 5^2
  6. Write final answer: Write the final answer.\newlineThe simplified form of the expression is 525^2.

More problems from Multiplication with rational exponents