Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(4)(3)*sqrt3 is equivalent to

3^((4)/(3))

3^(8)

3^((1)/(8))

3^((3)/(4))

The expression 343 \sqrt[4]{3} \cdot \sqrt{3} is equivalent to\newline343 3^{\frac{4}{3}} \newline38 3^{8} \newline318 3^{\frac{1}{8}} \newline334 3^{\frac{3}{4}}

Full solution

Q. The expression 343 \sqrt[4]{3} \cdot \sqrt{3} is equivalent to\newline343 3^{\frac{4}{3}} \newline38 3^{8} \newline318 3^{\frac{1}{8}} \newline334 3^{\frac{3}{4}}
  1. Given Expression: We are given the expression 34×3\sqrt[4]{3} \times \sqrt{3}, which means we have a fourth root of 33 multiplied by a square root of 33. We need to express this in terms of a single power of 33.
  2. Express in Terms: The fourth root of 33 can be written as 31/43^{1/4}, and the square root of 33 can be written as 31/23^{1/2}.\newlineSo, 34×3=31/4×31/2\sqrt[4]{3} \times \sqrt{3} = 3^{1/4} \times 3^{1/2}.
  3. Add Exponents: When multiplying expressions with the same base, we add the exponents. So, we add 14\frac{1}{4} and 12\frac{1}{2} to get the new exponent for 33. \newline14+12=14+24=34\frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{2}{4} = \frac{3}{4}. \newlineTherefore, 314×312=3343^{\frac{1}{4}} \times 3^{\frac{1}{2}} = 3^{\frac{3}{4}}.
  4. Final Simplified Form: Now we have the expression in the form of a single power of 33, which is 3343^{\frac{3}{4}}. This is the simplified form of the original expression.

More problems from Multiplication with rational exponents