Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(3)(5^(4))*root(5)(5^(6)) is equivalent to

5^((8)/(5))

25^((8)/(5))

25^((38)/(15))

5^((38)/(15))

The expression 543565 \sqrt[3]{5^{4}} \cdot \sqrt[5]{5^{6}} is equivalent to\newline585 5^{\frac{8}{5}} \newline2585 25^{\frac{8}{5}} \newline253815 25^{\frac{38}{15}} \newline53815 5^{\frac{38}{15}}

Full solution

Q. The expression 543565 \sqrt[3]{5^{4}} \cdot \sqrt[5]{5^{6}} is equivalent to\newline585 5^{\frac{8}{5}} \newline2585 25^{\frac{8}{5}} \newline253815 25^{\frac{38}{15}} \newline53815 5^{\frac{38}{15}}
  1. Understand the expression: Understand the given expression.\newlineWe have the expression 543565\sqrt[3]{5^{4}}\cdot\sqrt[5]{5^{6}}, which involves cube roots and fifth roots of powers of 55.
  2. Convert to fractional exponents: Convert the roots to fractional exponents.\newlineThe cube root of 545^4 can be written as 5435^{\frac{4}{3}}, and the fifth root of 565^6 can be written as 5655^{\frac{6}{5}}.\newlineSo, the expression becomes 543×5655^{\frac{4}{3}} \times 5^{\frac{6}{5}}.
  3. Apply multiplication rule: Apply the rule for multiplying powers with the same base.\newlineWhen multiplying powers with the same base, we add the exponents.\newlineSo, 543×565=543+655^{\frac{4}{3}} \times 5^{\frac{6}{5}} = 5^{\frac{4}{3} + \frac{6}{5}}.
  4. Find common denominator: Find a common denominator to add the fractions.\newlineThe common denominator for 33 and 55 is 1515.\newlineSo, we convert the fractions to have the denominator of 1515:\newline43=(4×53×5)=2015\frac{4}{3} = \left(\frac{4\times5}{3\times5}\right) = \frac{20}{15}\newline65=(6×35×3)=1815\frac{6}{5} = \left(\frac{6\times3}{5\times3}\right) = \frac{18}{15}
  5. Add fractions: Add the fractions.\newlineNow we add the fractions with the common denominator:\newline2015+1815=(20+18)15=3815\frac{20}{15} + \frac{18}{15} = \frac{(20 + 18)}{15} = \frac{38}{15}
  6. Write final expression: Write the final expression.\newlineThe expression now is 538155^{\frac{38}{15}}.
  7. Check final expression: Check if the final expression matches any of the given options.\newlineThe final expression 538155^{\frac{38}{15}} matches the last option, so the equivalent expression is 5(3815)5^{\left(\frac{38}{15}\right)}.

More problems from Multiplication with rational exponents