Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(3)(2^(4))*root(3)(2^(4)) is equivalent to

2^((16)/(9))

4^((8)/(3))

4^((16)/(9))

2^((8)/(3))

The expression 243243 \sqrt[3]{2^{4}} \cdot \sqrt[3]{2^{4}} is equivalent to\newline2169 2^{\frac{16}{9}} \newline483 4^{\frac{8}{3}} \newline4169 4^{\frac{16}{9}} \newline283 2^{\frac{8}{3}}

Full solution

Q. The expression 243243 \sqrt[3]{2^{4}} \cdot \sqrt[3]{2^{4}} is equivalent to\newline2169 2^{\frac{16}{9}} \newline483 4^{\frac{8}{3}} \newline4169 4^{\frac{16}{9}} \newline283 2^{\frac{8}{3}}
  1. Understand the problem: Understand the problem.\newlineWe need to simplify the expression 243\sqrt[3]{2^{4}}243\sqrt[3]{2^{4}}.
  2. Rewrite using radical notation: Rewrite the expression using radical notation.\newline243\sqrt[3]{2^{4}} can be written as (24)13(2^{4})^{\frac{1}{3}}.\newlineSo the expression becomes (24)13×(24)13(2^{4})^{\frac{1}{3}} \times (2^{4})^{\frac{1}{3}}.
  3. Apply power of a power rule: Apply the power of a power rule.\newlineWhen you raise a power to a power, you multiply the exponents.\newlineSo (24)13×(24)13(2^{4})^{\frac{1}{3}} \times (2^{4})^{\frac{1}{3}} becomes 24×(13)×24×(13)2^{4\times(\frac{1}{3})} \times 2^{4\times(\frac{1}{3})}.
  4. Simplify the exponents: Simplify the exponents. \newline4×(13)4\times\left(\frac{1}{3}\right) is 43\frac{4}{3}.\newlineSo we have 243×2432^{\frac{4}{3}} \times 2^{\frac{4}{3}}.
  5. Apply product of powers rule: Apply the product of powers rule.\newlineWhen you multiply powers with the same base, you add the exponents.\newlineSo 243×2432^{\frac{4}{3}} \times 2^{\frac{4}{3}} becomes 2(43+43)2^{(\frac{4}{3} + \frac{4}{3})}.
  6. Add the exponents: Add the exponents.\newline(43)+(43)(\frac{4}{3}) + (\frac{4}{3}) is 83\frac{8}{3}.\newlineSo the expression simplifies to 2832^{\frac{8}{3}}.

More problems from Multiplication with rational exponents