Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression (m2m(13))(12)\left(\frac{m^{2}}{m^{\left(\frac{1}{3}\right)}}\right)^{-\left(\frac{1}{2}\right)} is equivalent to\newline(11) m51-\sqrt[1]{m^{5}}\newline(22) 1m56\frac{1}{\sqrt[6]{m^{5}}}\newline(33) mm5-m\sqrt[5]{m}\newline(44) 1m3\frac{1}{\sqrt[3]{m}}

Full solution

Q. The expression (m2m(13))(12)\left(\frac{m^{2}}{m^{\left(\frac{1}{3}\right)}}\right)^{-\left(\frac{1}{2}\right)} is equivalent to\newline(11) m51-\sqrt[1]{m^{5}}\newline(22) 1m56\frac{1}{\sqrt[6]{m^{5}}}\newline(33) mm5-m\sqrt[5]{m}\newline(44) 1m3\frac{1}{\sqrt[3]{m}}
  1. Simplify Inside Parentheses: Simplify the expression inside the parentheses.\newlineWe have the expression ((m2)/(m(1)/(3)))(1)/(2)((m^{2})/(m^{(1)/(3)}))^{-(1)/(2)}. To simplify the expression inside the parentheses, we use the property of exponents that states when dividing like bases, we subtract the exponents.\newlineSo, (m2)/(m(1)/(3))=m21/3=m6/31/3=m5/3.(m^{2})/(m^{(1)/(3)}) = m^{2 - 1/3} = m^{6/3 - 1/3} = m^{5/3}.
  2. Apply Negative Exponent: Apply the negative exponent outside the parentheses.\newlineNow we have (m5/3)(1)/(2)(m^{5/3})^{-(1)/(2)}. A negative exponent means we take the reciprocal of the base. Therefore, we have (m5/3)(1)/(2)=(1/(m5/3))1/2(m^{5/3})^{-(1)/(2)} = (1/(m^{5/3}))^{1/2}.
  3. Simplify Fractional Exponent: Simplify the expression with the fractional exponent.\newlineWe have (1/(m5/3))1/2(1/(m^{5/3}))^{1/2}. When we raise a power to a power, we multiply the exponents. So, we get 1/(m5/31/2)=1/(m5/6)1/(m^{5/3 \cdot 1/2}) = 1/(m^{5/6}).
  4. Use Radical Notation: Write the expression using radical notation.\newlineThe expression 1m56\frac{1}{m^{\frac{5}{6}}} can be written in radical notation as 1m56\frac{1}{\sqrt[6]{m^{5}}}.
  5. Match with Options: Match the expression to the given options.\newlineThe expression (1)/(m56)(1)/(\sqrt[6]{m^{5}}) matches option (2)(2).

More problems from Multiplication with rational exponents