Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The derivative of the function 
f is defined by 
f^(')(x)=x^(2)cos(3x). If 
f(-2)=-2, then use a calculator to find the value of 
f(3) to the nearest thousandth.
Answer:

The derivative of the function f f is defined by f(x)=x2cos(3x) f^{\prime}(x)=x^{2} \cos (3 x) . If f(2)=2 f(-2)=-2 , then use a calculator to find the value of f(3) f(3) to the nearest thousandth.\newlineAnswer:

Full solution

Q. The derivative of the function f f is defined by f(x)=x2cos(3x) f^{\prime}(x)=x^{2} \cos (3 x) . If f(2)=2 f(-2)=-2 , then use a calculator to find the value of f(3) f(3) to the nearest thousandth.\newlineAnswer:
  1. Integrate f(x)f'(x): To find the value of f(3)f(3), we need to integrate the derivative f(x)=x2cos(3x)f'(x) = x^2\cos(3x) to get the original function f(x)f(x). We will then use the initial condition f(2)=2f(-2) = -2 to solve for the constant of integration.
  2. Find Constant CC: We integrate f(x)=x2cos(3x)f'(x) = x^2\cos(3x) with respect to xx. This requires integration by parts or a special technique since it is a product of a polynomial and a trigonometric function. We will use a calculator to perform this integration.
  3. Substitute x=2x = -2: After integrating, we get f(x)=x2sin(3x)329xsin(3x)227cos(3x)+Cf(x) = \frac{x^2\sin(3x)}{3} - \frac{2}{9}x\sin(3x) - \frac{2}{27}\cos(3x) + C, where CC is the constant of integration.
  4. Calculate Constant C: We use the initial condition f(2)=2f(-2) = -2 to find the constant C. We substitute x=2x = -2 into the integrated function and set it equal to 2-2.\newline2=(2)2sin(3(2))/3(2/9)(2)sin(3(2))(2/27)cos(3(2))+C-2 = (-2)^2\sin(3(-2))/3 - (2/9)(-2)\sin(3(-2)) - (2/27)\cos(3(-2)) + C
  5. Substitute x=3x = 3: We simplify and solve for CC.2=4sin(6)3+49sin(6)227cos(6)+C-2 = \frac{4\sin(-6)}{3} + \frac{4}{9}\sin(-6) - \frac{2}{27}\cos(-6) + C
  6. Calculate f(3)f(3): Using a calculator to find the values of sin(6)\sin(-6) and cos(6)\cos(-6), we get:\newlinesin(6)0.2794\sin(-6) \approx -0.2794\newlinecos(6)0.9602\cos(-6) \approx 0.9602
  7. Calculate f(3)f(3): Using a calculator to find the values of sin(6)\sin(-6) and cos(6)\cos(-6), we get:\newlinesin(6)0.2794\sin(-6) \approx -0.2794\newlinecos(6)0.9602\cos(-6) \approx 0.9602Substitute these values into the equation to solve for CC.\newline2=4(0.2794)/3+(4/9)(0.2794)(2/27)(0.9602)+C-2 = 4(-0.2794)/3 + (4/9)(-0.2794) - (2/27)(0.9602) + C
  8. Calculate f(3)f(3): Using a calculator to find the values of sin(6)\sin(-6) and cos(6)\cos(-6), we get:\newlinesin(6)0.2794\sin(-6) \approx -0.2794\newlinecos(6)0.9602\cos(-6) \approx 0.9602Substitute these values into the equation to solve for CC.\newline2=4(0.2794)/3+(4/9)(0.2794)(2/27)(0.9602)+C-2 = 4(-0.2794)/3 + (4/9)(-0.2794) - (2/27)(0.9602) + CPerform the calculations to find CC.\newline20.37250.12430.0711+C-2 \approx -0.3725 - 0.1243 - 0.0711 + C\newlineC2+0.3725+0.1243+0.0711C \approx -2 + 0.3725 + 0.1243 + 0.0711\newlinesin(6)\sin(-6)00
  9. Calculate f(3)f(3): Using a calculator to find the values of sin(6)\sin(-6) and cos(6)\cos(-6), we get:\newlinesin(6)0.2794\sin(-6) \approx -0.2794\newlinecos(6)0.9602\cos(-6) \approx 0.9602Substitute these values into the equation to solve for CC.\newline2=4(0.2794)/3+(4/9)(0.2794)(2/27)(0.9602)+C-2 = 4(-0.2794)/3 + (4/9)(-0.2794) - (2/27)(0.9602) + CPerform the calculations to find CC.\newline20.37250.12430.0711+C-2 \approx -0.3725 - 0.1243 - 0.0711 + C\newlineC2+0.3725+0.1243+0.0711C \approx -2 + 0.3725 + 0.1243 + 0.0711\newlinesin(6)\sin(-6)00Now that we have the constant CC, we can find f(3)f(3) by substituting sin(6)\sin(-6)33 into the integrated function sin(6)\sin(-6)44.\newlinesin(6)\sin(-6)55
  10. Calculate f(3)f(3): Using a calculator to find the values of sin(6)\sin(-6) and cos(6)\cos(-6), we get:\newlinesin(6)0.2794\sin(-6) \approx -0.2794\newlinecos(6)0.9602\cos(-6) \approx 0.9602Substitute these values into the equation to solve for CC.\newline2=4(0.2794)/3+(4/9)(0.2794)(2/27)(0.9602)+C-2 = 4(-0.2794)/3 + (4/9)(-0.2794) - (2/27)(0.9602) + CPerform the calculations to find CC.\newline20.37250.12430.0711+C-2 \approx -0.3725 - 0.1243 - 0.0711 + C\newlineC2+0.3725+0.1243+0.0711C \approx -2 + 0.3725 + 0.1243 + 0.0711\newlinesin(6)\sin(-6)00Now that we have the constant CC, we can find f(3)f(3) by substituting sin(6)\sin(-6)33 into the integrated function sin(6)\sin(-6)44.\newlinesin(6)\sin(-6)55Using a calculator to find the values of sin(6)\sin(-6)66 and sin(6)\sin(-6)77, we get:\newlinesin(6)\sin(-6)88\newlinesin(6)\sin(-6)99
  11. Calculate f(3)f(3): Using a calculator to find the values of sin(6)\sin(-6) and cos(6)\cos(-6), we get:\newlinesin(6)0.2794\sin(-6) \approx -0.2794\newlinecos(6)0.9602\cos(-6) \approx 0.9602Substitute these values into the equation to solve for CC.\newline2=4(0.2794)/3+(4/9)(0.2794)(2/27)(0.9602)+C-2 = 4(-0.2794)/3 + (4/9)(-0.2794) - (2/27)(0.9602) + CPerform the calculations to find CC.\newline20.37250.12430.0711+C-2 \approx -0.3725 - 0.1243 - 0.0711 + C\newlineC2+0.3725+0.1243+0.0711C \approx -2 + 0.3725 + 0.1243 + 0.0711\newlinesin(6)\sin(-6)00Now that we have the constant CC, we can find f(3)f(3) by substituting sin(6)\sin(-6)33 into the integrated function sin(6)\sin(-6)44.\newlinesin(6)\sin(-6)55Using a calculator to find the values of sin(6)\sin(-6)66 and sin(6)\sin(-6)77, we get:\newlinesin(6)\sin(-6)88\newlinesin(6)\sin(-6)99Substitute these values into the equation to find f(3)f(3).\newlinecos(6)\cos(-6)11
  12. Calculate f(3)f(3): Using a calculator to find the values of sin(6)\sin(-6) and cos(6)\cos(-6), we get:\newlinesin(6)0.2794\sin(-6) \approx -0.2794\newlinecos(6)0.9602\cos(-6) \approx 0.9602Substitute these values into the equation to solve for CC.\newline2=4(0.2794)/3+(4/9)(0.2794)(2/27)(0.9602)+C-2 = 4(-0.2794)/3 + (4/9)(-0.2794) - (2/27)(0.9602) + CPerform the calculations to find CC.\newline20.37250.12430.0711+C-2 \approx -0.3725 - 0.1243 - 0.0711 + C\newlineC2+0.3725+0.1243+0.0711C \approx -2 + 0.3725 + 0.1243 + 0.0711\newlinesin(6)\sin(-6)00Now that we have the constant CC, we can find f(3)f(3) by substituting sin(6)\sin(-6)33 into the integrated function sin(6)\sin(-6)44.\newlinesin(6)\sin(-6)55Using a calculator to find the values of sin(6)\sin(-6)66 and sin(6)\sin(-6)77, we get:\newlinesin(6)\sin(-6)88\newlinesin(6)\sin(-6)99Substitute these values into the equation to find f(3)f(3).\newlinecos(6)\cos(-6)11Perform the calculations to find f(3)f(3).\newlinecos(6)\cos(-6)33\newlinecos(6)\cos(-6)44\newlinecos(6)\cos(-6)55
  13. Calculate f(3)f(3): Using a calculator to find the values of sin(6)\sin(-6) and cos(6)\cos(-6), we get:\newlinesin(6)0.2794\sin(-6) \approx -0.2794\newlinecos(6)0.9602\cos(-6) \approx 0.9602Substitute these values into the equation to solve for CC.\newline2=4(0.2794)/3+(4/9)(0.2794)(2/27)(0.9602)+C-2 = 4(-0.2794)/3 + (4/9)(-0.2794) - (2/27)(0.9602) + CPerform the calculations to find CC.\newline20.37250.12430.0711+C-2 \approx -0.3725 - 0.1243 - 0.0711 + C\newlineC2+0.3725+0.1243+0.0711C \approx -2 + 0.3725 + 0.1243 + 0.0711\newlinesin(6)\sin(-6)00Now that we have the constant CC, we can find f(3)f(3) by substituting sin(6)\sin(-6)33 into the integrated function sin(6)\sin(-6)44.\newlinesin(6)\sin(-6)55Using a calculator to find the values of sin(6)\sin(-6)66 and sin(6)\sin(-6)77, we get:\newlinesin(6)\sin(-6)88\newlinesin(6)\sin(-6)99Substitute these values into the equation to find f(3)f(3).\newlinecos(6)\cos(-6)11Perform the calculations to find f(3)f(3).\newlinecos(6)\cos(-6)33\newlinecos(6)\cos(-6)44\newlinecos(6)\cos(-6)55Round the result to the nearest thousandth.\newlinecos(6)\cos(-6)66

More problems from Evaluate variable expressions for sequences