Q. The angle θ1 is located in Quadrant III, and sin(θ1)=−1312.What is the value of cos(θ1) ?Express your answer exactly.cos(θ1)=□
Apply Pythagorean Identity: Use the Pythagorean identity for sine and cosine.The Pythagorean identity states that sin2(θ)+cos2(θ)=1.Since we know sin(θ1)=−1312, we can substitute this into the identity to find cos(θ1).
Substitute sin(θ1): Substitute the value of sin(θ1) into the Pythagorean identity.sin2(θ1)+cos2(θ1)=1(−1312)2+cos2(θ1)=1169144+cos2(θ1)=1
Solve for cos2(θ1): Solve for cos2(θ1). cos2(θ1)=1−169144 cos2(θ1)=169169−169144 cos2(θ1)=169169−144 cos2(θ1)=16925
Find cos(θ1): Take the square root of both sides to find cos(θ1). Since θ1 is in Quadrant III, where cosine is negative, we take the negative square root. cos(θ1)=−16925cos(θ1)=−135
More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity