Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
9ft by 
6ft. Bob measures the sides to be 
8.62ft by 
5.88ft. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 9ft 9 \mathrm{ft} by 6ft 6 \mathrm{ft} . Bob measures the sides to be 8.62ft 8.62 \mathrm{ft} by 5.88ft 5.88 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 9ft 9 \mathrm{ft} by 6ft 6 \mathrm{ft} . Bob measures the sides to be 8.62ft 8.62 \mathrm{ft} by 5.88ft 5.88 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate actual area: Calculate the actual area of the rectangle using the actual dimensions.\newlineActual area = length×width=9ft×6ft.\text{length} \times \text{width} = 9\,\text{ft} \times 6\,\text{ft}.
  2. Perform actual area calculation: Perform the calculation for the actual area.\newlineActual area = 9ft×6ft=54ft29\,\text{ft} \times 6\,\text{ft} = 54\,\text{ft}^2.
  3. Calculate measured area: Calculate the measured area of the rectangle using Bob's measurements.\newlineMeasured area = measured length ×\times measured width = 8.62ft8.62\,\text{ft} ×\times 5.88ft5.88\,\text{ft}.
  4. Perform measured area calculation: Perform the calculation for the measured area.\newlineMeasured area = 8.62ft×5.88ft50.6836ft28.62\,\text{ft} \times 5.88\,\text{ft} \approx 50.6836\,\text{ft}^2.
  5. Calculate absolute error: Calculate the absolute error by subtracting the measured area from the actual area.\newlineAbsolute error = Actual areaMeasured area=54ft250.6836ft2|\text{Actual area} - \text{Measured area}| = |54\text{ft}^2 - 50.6836\text{ft}^2|.
  6. Perform absolute error calculation: Perform the calculation for the absolute error. Absolute error = 54ft250.6836ft23.3164ft2|54\text{ft}^2 - 50.6836\text{ft}^2| \approx 3.3164\text{ft}^2.
  7. Calculate relative error: Calculate the relative error by dividing the absolute error by the actual area and then multiplying by 100100 to get the percentage.\newlineRelative error = (Absolute error/Actual area)×100(\text{Absolute error} / \text{Actual area}) \times 100.
  8. Perform relative error calculation: Perform the calculation for the relative error. Relative error = (3.3164ft2/54ft2)×1006.1411%(3.3164\,\text{ft}^2 / 54\,\text{ft}^2) \times 100 \approx 6.1411\%.
  9. Round relative error: Round the relative error to the nearest hundredth.\newlineRelative error 6.14%\approx 6.14\%.

More problems from Percent error: word problems