Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
9cm by 
6cm. Alex measures the sides to be 
9.41cm by 
6.3cm. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 9 cm 9 \mathrm{~cm} by 6 cm 6 \mathrm{~cm} . Alex measures the sides to be 9.41 cm 9.41 \mathrm{~cm} by 6.3 cm 6.3 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 9 cm 9 \mathrm{~cm} by 6 cm 6 \mathrm{~cm} . Alex measures the sides to be 9.41 cm 9.41 \mathrm{~cm} by 6.3 cm 6.3 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Actual Area: Calculate the actual area of the rectangle using the actual dimensions.\newlineThe formula for the area of a rectangle is length×width\text{length} \times \text{width}.\newlineActual area = 9cm×6cm=54cm29\,\text{cm} \times 6\,\text{cm} = 54\,\text{cm}^2.
  2. Calculate Measured Area: Calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = 9.41cm×6.3cm9.41\,\text{cm} \times 6.3\,\text{cm}.\newlineLet's perform the multiplication to find the measured area.\newlineMeasured area = 59.283cm259.283\,\text{cm}^2.
  3. Calculate Absolute Error: Calculate the absolute error by subtracting the actual area from the measured area.\newlineAbsolute error = Measured area - Actual area.\newlineAbsolute error = 59.283cm254cm2=5.283cm259.283\,\text{cm}^2 - 54\,\text{cm}^2 = 5.283\,\text{cm}^2.
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual area.\newlineRelative error = Absolute error / Actual area.\newlineRelative error = 5.283cm2/54cm25.283\,\text{cm}^2 / 54\,\text{cm}^2.\newlineLet's perform the division to find the relative error.\newlineRelative error 0.0978333\approx 0.0978333.
  5. Convert to Percentage: Convert the relative error to a percentage and round to the nearest hundredth.\newlineRelative error (as a percentage) = Relative error ×100\times 100.\newlineRelative error (as a percentage) 0.0978333×1009.78%\approx 0.0978333 \times 100 \approx 9.78\%.

More problems from Percent error: word problems