Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 7 in by 
2in. Eric measures the sides to be 7.31 in by 1.91 in. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 77 in by 2in 2 \mathrm{in} . Eric measures the sides to be 77.3131 in by 11.9191 in. In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 77 in by 2in 2 \mathrm{in} . Eric measures the sides to be 77.3131 in by 11.9191 in. In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Actual Area: First, calculate the actual area of the rectangle using the actual dimensions.\newlineActual area = Length×Width\text{Length} \times \text{Width}\newlineActual area = 7in×2in7 \, \text{in} \times 2 \, \text{in}\newlineActual area = 14in214 \, \text{in}^2
  2. Calculate Measured Area: Next, calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = Measured Length ×\times Measured Width\newlineMeasured area = 7.31in×1.91in7.31 \, \text{in} \times 1.91 \, \text{in}\newlineMeasured area = 13.9611in213.9611 \, \text{in}^2
  3. Find Absolute Error: Now, find the absolute error by subtracting the actual area from the measured area.\newlineAbsolute error = Measured areaActual area|\text{Measured area} - \text{Actual area}|\newlineAbsolute error = 13.9611 in214 in2|13.9611 \text{ in}^2 - 14 \text{ in}^2|\newlineAbsolute error = 0.0389 in2|-0.0389 \text{ in}^2|\newlineAbsolute error = 0.0389 in20.0389 \text{ in}^2 (since error is always positive)
  4. Find Relative Error: To find the relative error, divide the absolute error by the actual area and express it as a percentage.\newlineRelative error = (Absolute error/Actual area)×100%(\text{Absolute error} / \text{Actual area}) \times 100\%\newlineRelative error = (0.0389 in2/14 in2)×100%(0.0389 \text{ in}^2 / 14 \text{ in}^2) \times 100\%\newlineRelative error = 0.00277857143×100%0.00277857143 \times 100\%\newlineRelative error = 0.277857143%0.277857143\%
  5. Round Relative Error: Round the relative error to the nearest thousandth.\newlineRelative error 0.278%\approx 0.278\%

More problems from Percent error: word problems