Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
6ft by 
2ft. Alex measures the sides to be 
6.22ft by 
1.68ft. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 6ft 6 \mathrm{ft} by 2ft 2 \mathrm{ft} . Alex measures the sides to be 6.22ft 6.22 \mathrm{ft} by 1.68ft 1.68 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 6ft 6 \mathrm{ft} by 2ft 2 \mathrm{ft} . Alex measures the sides to be 6.22ft 6.22 \mathrm{ft} by 1.68ft 1.68 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Actual Area: Calculate the actual area of the rectangle using the actual dimensions.\newlineThe formula for the area of a rectangle is length×width\text{length} \times \text{width}.\newlineActual area = 6ft×2ft=12ft26\,\text{ft} \times 2\,\text{ft} = 12\,\text{ft}^2.
  2. Calculate Measured Area: Calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = 6.22ft×1.68ft6.22\,\text{ft} \times 1.68\,\text{ft}.\newlineLet's perform the multiplication to find the measured area.\newlineMeasured area = 10.4496ft210.4496\,\text{ft}^2.
  3. Calculate Absolute Error: Calculate the absolute error by subtracting the actual area from the measured area.\newlineAbsolute error = Measured areaActual area|\text{Measured area} - \text{Actual area}|.\newlineAbsolute error = 10.4496ft212ft2|10.4496\text{ft}^2 - 12\text{ft}^2|.\newlineAbsolute error = 1.5504ft2|-1.5504\text{ft}^2|.\newlineSince we are looking for the absolute value, we take the positive value of the result.\newlineAbsolute error = 1.5504ft21.5504\text{ft}^2.
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual area.\newlineRelative error = Absolute errorActual area\frac{\text{Absolute error}}{\text{Actual area}}.\newlineRelative error = 1.5504ft212ft2\frac{1.5504\,\text{ft}^2}{12\,\text{ft}^2}.\newlineLet's perform the division to find the relative error.\newlineRelative error 0.1292\approx 0.1292.
  5. Convert to Percentage: Convert the relative error to a percentage and round to the nearest hundredth.\newlineRelative error (as a percentage) = Relative error ×100\times 100.\newlineRelative error (as a percentage) 0.1292×100\approx 0.1292 \times 100.\newlineRelative error (as a percentage) 12.92%\approx 12.92\%.\newlineWhen rounded to the nearest hundredth, the relative error is 12.92%12.92\%.

More problems from Percent error: word problems