Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
6ft by 
10ft. David measures the sides to be 
6.23ft by 
9.78ft. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 6ft 6 \mathrm{ft} by 10ft 10 \mathrm{ft} . David measures the sides to be 6.23ft 6.23 \mathrm{ft} by 9.78ft 9.78 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 6ft 6 \mathrm{ft} by 10ft 10 \mathrm{ft} . David measures the sides to be 6.23ft 6.23 \mathrm{ft} by 9.78ft 9.78 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Actual Area: To find the relative error, we first need to calculate the actual area and the measured area of the rectangle.\newlineThe actual area AactualA_{\text{actual}} is the product of the actual length and width.\newlineAactual=6ft×10ftA_{\text{actual}} = 6\,\text{ft} \times 10\,\text{ft}
  2. Calculate Measured Area: Now, let's calculate the measured area (AmeasuredA_{\text{measured}}) using David's measurements.\newlineAmeasured=6.23ft×9.78ftA_{\text{measured}} = 6.23\,\text{ft} \times 9.78\,\text{ft}
  3. Find Absolute Error: Perform the calculations for both the actual area and the measured area.\newlineAactual=6ft×10ft=60ft2A_{\text{actual}} = 6\,\text{ft} \times 10\,\text{ft} = 60\,\text{ft}^2\newlineAmeasured=6.23ft×9.78ft60.944ft2A_{\text{measured}} = 6.23\,\text{ft} \times 9.78\,\text{ft} \approx 60.944\,\text{ft}^2
  4. Calculate Absolute Error: Next, we need to find the absolute error, which is the difference between the measured area and the actual area. Absolute error = AmeasuredAactual|A_{\text{measured}} - A_{\text{actual}}|
  5. Find Relative Error: Calculate the absolute error using the values we have.\newlineAbsolute error = 60.944ft260ft20.944ft2|60.944\,\text{ft}^2 - 60\,\text{ft}^2| \approx 0.944\,\text{ft}^2
  6. Calculate Relative Error: To find the relative error, we divide the absolute error by the actual area and then multiply by 100100 to get a percentage.\newlineRelative error = (Absolute error/Aactual)×100(\text{Absolute error} / A_{\text{actual}}) \times 100
  7. Calculate Relative Error: To find the relative error, we divide the absolute error by the actual area and then multiply by 100100 to get a percentage.\newlineRelative error = (Absolute error/Aactual)×100(\text{Absolute error} / A_{\text{actual}}) \times 100Now, let's perform the calculation for the relative error.\newlineRelative error (0.944ft2/60ft2)×1001.573%\approx (0.944\,\text{ft}^2 / 60\,\text{ft}^2) \times 100 \approx 1.573\% (rounded to the nearest thousandth)

More problems from Percent error: word problems