Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
6cm by 
10cm. David measures the sides to be 
5.6cm by 
10.46cm. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 6 cm 6 \mathrm{~cm} by 10 cm 10 \mathrm{~cm} . David measures the sides to be 5.6 cm 5.6 \mathrm{~cm} by 10.46 cm 10.46 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 6 cm 6 \mathrm{~cm} by 10 cm 10 \mathrm{~cm} . David measures the sides to be 5.6 cm 5.6 \mathrm{~cm} by 10.46 cm 10.46 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Actual Area: First, calculate the actual area of the rectangle using the actual dimensions.\newlineActual area = length×width\text{length} \times \text{width}\newlineActual area = 6cm×10cm6\,\text{cm} \times 10\,\text{cm}\newlineActual area = 60cm260\,\text{cm}^2
  2. Calculate Measured Area: Next, calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = measured length ×\times measured width\newlineMeasured area = 5.6cm×10.46cm5.6\,\text{cm} \times 10.46\,\text{cm}\newlineMeasured area = 58.576cm258.576\,\text{cm}^2
  3. Find Absolute Error: Now, find the absolute error by subtracting the actual area from the measured area.\newlineAbsolute error = Measured areaActual area|\text{Measured area} - \text{Actual area}|\newlineAbsolute error = 58.576cm260cm2|58.576\text{cm}^2 - 60\text{cm}^2|\newlineAbsolute error = 1.424cm2|-1.424\text{cm}^2|\newlineAbsolute error = 1.424cm21.424\text{cm}^2 (since error is always positive)
  4. Calculate Relative Error: To find the relative error, divide the absolute error by the actual area and express it as a decimal.\newlineRelative error (as a decimal) = Absolute errorActual area\frac{\text{Absolute error}}{\text{Actual area}}\newlineRelative error (as a decimal) = 1.424cm260cm2\frac{1.424\,\text{cm}^2}{60\,\text{cm}^2}\newlineRelative error (as a decimal) = 0.0237330.023733\ldots
  5. Express Relative Error: Finally, express the relative error as a decimal rounded to the nearest thousandth.\newlineRelative error (rounded) = 0.0240.024 (rounded to three decimal places)

More problems from Percent error: word problems