Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
4ft by 
2ft. David measures the sides to be 
3.66ft by 
1.79ft. In calculating the area, what is the relative error, to the nearest hundredth.
Answer:

The actual dimensions of a rectangle are 4ft 4 \mathrm{ft} by 2ft 2 \mathrm{ft} . David measures the sides to be 3.66ft 3.66 \mathrm{ft} by 1.79ft 1.79 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 4ft 4 \mathrm{ft} by 2ft 2 \mathrm{ft} . David measures the sides to be 3.66ft 3.66 \mathrm{ft} by 1.79ft 1.79 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest hundredth.\newlineAnswer:
  1. Calculate Actual Area: Calculate the actual area of the rectangle using the actual dimensions.\newlineThe formula for the area of a rectangle is length×width\text{length} \times \text{width}.\newlineActual area = 4ft×2ft=8ft24\,\text{ft} \times 2\,\text{ft} = 8\,\text{ft}^2.
  2. Calculate Measured Area: Calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = 3.66ft×1.79ft3.66\,\text{ft} \times 1.79\,\text{ft}.\newlineLet's perform the multiplication to find the measured area.\newlineMeasured area = 6.5502ft26.5502\,\text{ft}^2.
  3. Calculate Absolute Error: Calculate the absolute error by subtracting the actual area from the measured area.\newlineAbsolute error = Measured areaActual area|\text{Measured area} - \text{Actual area}|.\newlineAbsolute error = 6.5502ft28ft2|6.5502\text{ft}^2 - 8\text{ft}^2|.\newlineAbsolute error = 1.4498ft2|-1.4498\text{ft}^2|.\newlineSince we are looking for the absolute value, we take the positive value of the result.\newlineAbsolute error = 1.4498ft21.4498\text{ft}^2.
  4. Calculate Relative Error: Calculate the relative error by dividing the absolute error by the actual area.\newlineRelative error = Absolute errorActual area\frac{\text{Absolute error}}{\text{Actual area}}.\newlineRelative error = 1.4498ft28ft2\frac{1.4498\,\text{ft}^2}{8\,\text{ft}^2}.\newlineLet's perform the division to find the relative error.\newlineRelative error = 0.1812250.181225.
  5. Convert to Percentage: Convert the relative error to a percentage and round to the nearest hundredth.\newlineRelative error (as a percentage) = Relative error ×100\times 100.\newlineRelative error (as a percentage) = 0.181225×1000.181225 \times 100.\newlineRelative error (as a percentage) = 18.1225%18.1225\%.\newlineRounded to the nearest hundredth, the relative error is 18.12%18.12\%.

More problems from Percent error: word problems