Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 4 in by 9 in. Eric measures the sides to be 3.87 in by 9.22 in. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 44 in by 99 in. Eric measures the sides to be 33.8787 in by 99.2222 in. In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 44 in by 99 in. Eric measures the sides to be 33.8787 in by 99.2222 in. In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Actual Area: First, calculate the actual area of the rectangle using the actual dimensions.\newlineActual area = length ×\times width\newlineActual area = 44 in ×\times 99 in\newlineActual area = 3636 in2^2
  2. Calculate Measured Area: Next, calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = measured length ×\times measured width\newlineMeasured area = 3.87in×9.22in3.87 \, \text{in} \times 9.22 \, \text{in}\newlineMeasured area = 35.6824in235.6824 \, \text{in}^2
  3. Find Absolute Error: Now, find the absolute error by subtracting the actual area from the measured area.\newlineAbsolute error = Measured areaActual area|\text{Measured area} - \text{Actual area}|\newlineAbsolute error = 35.6824 in236 in2|35.6824 \text{ in}^2 - 36 \text{ in}^2|\newlineAbsolute error = 0.3176 in2| -0.3176 \text{ in}^2|\newlineAbsolute error = 0.3176 in20.3176 \text{ in}^2 (since absolute error is always positive)
  4. Calculate Relative Error: To find the relative error, divide the absolute error by the actual area and express it as a percentage.\newlineRelative error = (Absolute error/Actual area)×100%(\text{Absolute error} / \text{Actual area}) \times 100\%\newlineRelative error = (0.3176 in2/36 in2)×100%(0.3176 \text{ in}^2 / 36 \text{ in}^2) \times 100\%\newlineRelative error = 0.00882222222...×100%0.00882222222... \times 100\%\newlineRelative error = 0.882222222...%0.882222222...\%
  5. Round Relative Error: Finally, round the relative error to the nearest thousandth.\newlineRelative error 0.882%\approx 0.882\%

More problems from Percent error: word problems