Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
3cm by 
9cm. Alex measures the sides to be 
3.29cm by 
9.22cm. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 9 cm 9 \mathrm{~cm} . Alex measures the sides to be 3.29 cm 3.29 \mathrm{~cm} by 9.22 cm 9.22 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 9 cm 9 \mathrm{~cm} . Alex measures the sides to be 3.29 cm 3.29 \mathrm{~cm} by 9.22 cm 9.22 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Actual Area: Calculate the actual area of the rectangle using the actual dimensions.\newlineThe formula for the area of a rectangle is length×width\text{length} \times \text{width}.\newlineActual area = 3cm×9cm=27cm23\,\text{cm} \times 9\,\text{cm} = 27\,\text{cm}^2.
  2. Calculate Measured Area: Calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = 3.29cm×9.22cm3.29\,\text{cm} \times 9.22\,\text{cm}.\newlineLet's perform the multiplication to find the measured area.\newlineMeasured area = 30.3348cm230.3348\,\text{cm}^2.
  3. Calculate Absolute Error: Calculate the absolute error in the area.\newlineAbsolute error = Measured areaActual area|\text{Measured area} - \text{Actual area}|.\newlineAbsolute error = 30.3348cm227cm2|30.3348\,\text{cm}^2 - 27\,\text{cm}^2|.\newlineAbsolute error = 3.3348cm23.3348\,\text{cm}^2.
  4. Calculate Relative Error: Calculate the relative error.\newlineRelative error = Absolute errorActual area\frac{\text{Absolute error}}{\text{Actual area}}.\newlineRelative error = 3.3348cm227cm2\frac{3.3348\,\text{cm}^2}{27\,\text{cm}^2}.\newlineLet's perform the division to find the relative error.\newlineRelative error 0.123511\approx 0.123511.
  5. Express Relative Error: Express the relative error to the nearest thousandth.\newlineTo express the relative error to the nearest thousandth, we round it to three decimal places.\newlineRelative error 0.124\approx 0.124 (rounded to the nearest thousandth).

More problems from Percent error: word problems