Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
3cm by 
8cm. Eric measures the sides to be 
2.57cm by 
8.02cm. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 8 cm 8 \mathrm{~cm} . Eric measures the sides to be 2.57 cm 2.57 \mathrm{~cm} by 8.02 cm 8.02 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 8 cm 8 \mathrm{~cm} . Eric measures the sides to be 2.57 cm 2.57 \mathrm{~cm} by 8.02 cm 8.02 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate actual area: Calculate the actual area of the rectangle using the actual dimensions.\newlineActual area = length×width=3cm×8cm=24cm2\text{length} \times \text{width} = 3\,\text{cm} \times 8\,\text{cm} = 24\,\text{cm}^2.
  2. Calculate measured area: Calculate the measured area of the rectangle using the measured dimensions.\newlineMeasured area = measured length ×\times measured width = 2.57cm×8.02cm=20.594cm22.57\,\text{cm} \times 8.02\,\text{cm} = 20.594\,\text{cm}^2.
  3. Calculate absolute error: Calculate the absolute error in the area.\newlineAbsolute error = Actual areaMeasured area=24cm220.594cm2=3.406cm2|\text{Actual area} - \text{Measured area}| = |24\,\text{cm}^2 - 20.594\,\text{cm}^2| = 3.406\,\text{cm}^2.
  4. Calculate relative error: Calculate the relative error by dividing the absolute error by the actual area and then converting it to a percentage.\newlineRelative error = (Absolute error/Actual area)×100=(3.406cm2/24cm2)×100(\text{Absolute error} / \text{Actual area}) \times 100 = (3.406\,\text{cm}^2 / 24\,\text{cm}^2) \times 100.
  5. Perform calculation: Perform the calculation for the relative error.\newlineRelative error = (3.406/24)×10014.1917%(3.406 / 24) \times 100 \approx 14.1917\%.
  6. Convert to decimal: Convert the relative error to a decimal to the nearest thousandth.\newlineRelative error (to the nearest thousandth) = 0.1420.142 (rounded from 0.14170.1417).

More problems from Pythagorean Theorem and its converse