Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
3cm by 
2cm. Eric measures the sides to be 
3.49cm by 
2.13cm. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 2 cm 2 \mathrm{~cm} . Eric measures the sides to be 3.49 cm 3.49 \mathrm{~cm} by 2.13 cm 2.13 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 3 cm 3 \mathrm{~cm} by 2 cm 2 \mathrm{~cm} . Eric measures the sides to be 3.49 cm 3.49 \mathrm{~cm} by 2.13 cm 2.13 \mathrm{~cm} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Actual Area: To find the relative error, we first need to calculate the actual area and the measured area of the rectangle.\newlineThe actual area AactualA_{\text{actual}} is the product of the actual length and width.\newlineAactual=3cm×2cmA_{\text{actual}} = 3\,\text{cm} \times 2\,\text{cm}
  2. Calculate Measured Area: Now we calculate the measured area (AmeasuredA_{\text{measured}}) using the measured dimensions.\newlineAmeasured=3.49cm×2.13cmA_{\text{measured}} = 3.49\,\text{cm} \times 2.13\,\text{cm}
  3. Find Absolute Error: Perform the calculations for both actual and measured areas.\newlineAactual=3cm×2cm=6cm2A_{\text{actual}} = 3\,\text{cm} \times 2\,\text{cm} = 6\,\text{cm}^2\newlineAmeasured=3.49cm×2.13cm=7.4327cm2A_{\text{measured}} = 3.49\,\text{cm} \times 2.13\,\text{cm} = 7.4327\,\text{cm}^2
  4. Calculate Absolute Error: The absolute error is the difference between the measured area and the actual area. Absolute error = AmeasuredAactual|A_{\text{measured}} - A_{\text{actual}}|
  5. Find Relative Error: Calculate the absolute error using the values obtained.\newlineAbsolute error = 7.4327cm26cm2=1.4327cm2=1.4327cm2|7.4327\,\text{cm}^2 - 6\,\text{cm}^2| = |1.4327\,\text{cm}^2| = 1.4327\,\text{cm}^2
  6. Calculate Relative Error: The relative error is the absolute error divided by the actual area.\newlineRelative error = Absolute errorAactual\frac{\text{Absolute error}}{A_{\text{actual}}}
  7. Perform Division: Now we calculate the relative error with the values we have.\newlineRelative error = 1.4327cm26cm2\frac{1.4327\,\text{cm}^2}{6\,\text{cm}^2}
  8. Round to Nearest Thousandth: Perform the division to find the relative error.\newlineRelative error = 1.4327cm26cm20.2387833333\frac{1.4327\,\text{cm}^2}{6\,\text{cm}^2} \approx 0.2387833333
  9. Round to Nearest Thousandth: Perform the division to find the relative error.\newlineRelative error = 1.4327cm26cm20.2387833333\frac{1.4327\,\text{cm}^2}{6\,\text{cm}^2} \approx 0.2387833333To express the relative error to the nearest thousandth, we round the result to three decimal places.\newlineRelative error 0.239\approx 0.239

More problems from Percent error: word problems