Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The actual dimensions of a rectangle are 
10ft by 
10ft. Alex measures the sides to be 
9.85ft by 
9.59ft. In calculating the area, what is the relative error, to the nearest thousandth.
Answer:

The actual dimensions of a rectangle are 10ft 10 \mathrm{ft} by 10ft 10 \mathrm{ft} . Alex measures the sides to be 9.85ft 9.85 \mathrm{ft} by 9.59ft 9.59 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:

Full solution

Q. The actual dimensions of a rectangle are 10ft 10 \mathrm{ft} by 10ft 10 \mathrm{ft} . Alex measures the sides to be 9.85ft 9.85 \mathrm{ft} by 9.59ft 9.59 \mathrm{ft} . In calculating the area, what is the relative error, to the nearest thousandth.\newlineAnswer:
  1. Calculate Actual Area: To find the relative error, we first need to calculate the actual area of the rectangle and the measured area of the rectangle. The formula for the area of a rectangle is length×widthlength \times width.
  2. Calculate Measured Area: Calculate the actual area using the actual dimensions: 10ft×10ft=100ft210\text{ft} \times 10\text{ft} = 100\text{ft}^2.
  3. Find Absolute Error: Calculate the measured area using the measured dimensions: 9.85ft×9.59ft.9.85\,\text{ft} \times 9.59\,\text{ft}.
  4. Calculate Relative Error: Perform the multiplication to find the measured area: 9.85ft×9.59ft=94.3915ft29.85\,\text{ft} \times 9.59\,\text{ft} = 94.3915\,\text{ft}^2.
  5. Round Relative Error: Now, we need to find the absolute error, which is the difference between the actual area and the measured area. Absolute error = Actual AreaMeasured Area|\text{Actual Area} - \text{Measured Area}|.
  6. Round Relative Error: Now, we need to find the absolute error, which is the difference between the actual area and the measured area. Absolute error = Actual AreaMeasured Area|\text{Actual Area} - \text{Measured Area}|.Calculate the absolute error: 100ft294.3915ft2=5.6085ft2|100\text{ft}^2 - 94.3915\text{ft}^2| = 5.6085\text{ft}^2.
  7. Round Relative Error: Now, we need to find the absolute error, which is the difference between the actual area and the measured area. Absolute error = Actual AreaMeasured Area|\text{Actual Area} - \text{Measured Area}|.Calculate the absolute error: 100ft294.3915ft2=5.6085ft2|100\text{ft}^2 - 94.3915\text{ft}^2| = 5.6085\text{ft}^2.To find the relative error, we divide the absolute error by the actual area. Relative error = \frac{\text{Absolute error}}{\text{Actual Area}}.
  8. Round Relative Error: Now, we need to find the absolute error, which is the difference between the actual area and the measured area. Absolute error = Actual AreaMeasured Area|\text{Actual Area} - \text{Measured Area}|.Calculate the absolute error: 100ft294.3915ft2=5.6085ft2|100\text{ft}^2 - 94.3915\text{ft}^2| = 5.6085\text{ft}^2.To find the relative error, we divide the absolute error by the actual area. Relative error = \frac{\text{Absolute error}}{\text{Actual Area}}.Perform the division to find the relative error: 5.6085ft2100ft2=0.056085\frac{5.6085\text{ft}^2}{100\text{ft}^2} = 0.056085.
  9. Round Relative Error: Now, we need to find the absolute error, which is the difference between the actual area and the measured area. Absolute error = Actual AreaMeasured Area|\text{Actual Area} - \text{Measured Area}|.Calculate the absolute error: 100ft294.3915ft2=5.6085ft2|100\text{ft}^2 - 94.3915\text{ft}^2| = 5.6085\text{ft}^2.To find the relative error, we divide the absolute error by the actual area. Relative error = \frac{\text{Absolute error}}{\text{Actual Area}}.Perform the division to find the relative error: 5.6085ft2100ft2=0.056085\frac{5.6085\text{ft}^2}{100\text{ft}^2} = 0.056085.Finally, we round the relative error to the nearest thousandth: 0.0560850.056085 rounded to the nearest thousandth is 0.0560.056.

More problems from Percent error: word problems